Skip to main content
U.S. flag

An official website of the United States government

Climate Change

Filter Total Items: 11

Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Climate-driven forest disturbances, particularly drought-induced tree mortality and large high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies) in the Southern Rockies and across the Western U.S. We will combine unique, long-term place-based ecological data, diverse methods (e.g., paleo...
Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Climate-driven forest disturbances, particularly drought-induced tree mortality and large high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies) in the Southern Rockies and across the Western U.S. We will combine unique, long-term place-based ecological data, diverse methods (e.g., paleo...
Learn More

Characterizing greater sage-grouse climate-driven maladaptation

Climate change will expose many species to novel extreme environmental conditions, that may test organisms’ ability to respond to environmental change. Local adaptation, when a species evolves to be more suited for its local environment, can be an indicator of whether a species is likely to persist in the rapidly changing environment. Habitat specialists, like the greater sage-grouse, have evolved...
Characterizing greater sage-grouse climate-driven maladaptation

Characterizing greater sage-grouse climate-driven maladaptation

Climate change will expose many species to novel extreme environmental conditions, that may test organisms’ ability to respond to environmental change. Local adaptation, when a species evolves to be more suited for its local environment, can be an indicator of whether a species is likely to persist in the rapidly changing environment. Habitat specialists, like the greater sage-grouse, have evolved...
Learn More

Influence of future climate scenarios on habitat and population dynamics of greater sage-grouse

Sagebrush ecosystems and sagebrush-dependent wildlife species are likely to experience more frequent extreme drought and temperature conditions with changing climate. Greater sage-grouse ( Centrocercus urophasianus), an indicator species in sagebrush ecosystems, may experience habitat and population losses that are increasingly exacerbated by current and future climate change. However, the direct...
Influence of future climate scenarios on habitat and population dynamics of greater sage-grouse

Influence of future climate scenarios on habitat and population dynamics of greater sage-grouse

Sagebrush ecosystems and sagebrush-dependent wildlife species are likely to experience more frequent extreme drought and temperature conditions with changing climate. Greater sage-grouse ( Centrocercus urophasianus), an indicator species in sagebrush ecosystems, may experience habitat and population losses that are increasingly exacerbated by current and future climate change. However, the direct...
Learn More

Developing science syntheses to facilitate climate-informed land management decisions and NEPA analyses on rangelands in the sagebrush biome

The National Environmental Policy Act (NEPA) requires federal public land managers to assess potential environmental impacts of proposed actions. The USGS, Bureau of Land Management, US Fish and Wildlife Service, Colorado State University, and North Central Climate Adaptation Science Center are working together to develop science syntheses that can facilitate considerations of climate change in...
Developing science syntheses to facilitate climate-informed land management decisions and NEPA analyses on rangelands in the sagebrush biome

Developing science syntheses to facilitate climate-informed land management decisions and NEPA analyses on rangelands in the sagebrush biome

The National Environmental Policy Act (NEPA) requires federal public land managers to assess potential environmental impacts of proposed actions. The USGS, Bureau of Land Management, US Fish and Wildlife Service, Colorado State University, and North Central Climate Adaptation Science Center are working together to develop science syntheses that can facilitate considerations of climate change in...
Learn More

Predicting the phenology of invasive grasses under a changing climate to inform mapping and management

Cheatgrass, an invasive annual grass, reduces ecosystem productivity, negatively impacts biodiversity, and is increasingly problematic in higher elevation ecosystems with climate change. Cheatgrass phenology (that is, the timing of yearly growth and lifespan) varies greatly with elevation, climate, and weather from year to year, which can make management planning difficult and reduce the ability...
Predicting the phenology of invasive grasses under a changing climate to inform mapping and management

Predicting the phenology of invasive grasses under a changing climate to inform mapping and management

Cheatgrass, an invasive annual grass, reduces ecosystem productivity, negatively impacts biodiversity, and is increasingly problematic in higher elevation ecosystems with climate change. Cheatgrass phenology (that is, the timing of yearly growth and lifespan) varies greatly with elevation, climate, and weather from year to year, which can make management planning difficult and reduce the ability...
Learn More

Soil-climate for Managing Sagebrush Ecosystems

Soil-climate describes the temperature and moisture conditions important for plant growth and function. Soil condition patterns determine which vegetation is most abundant, thus controlling which habitats, invasive species, fuels, and economic activities are present in a region. Here, we use a model to simulate the vertical movement of water in a soil profile to provide insights into landscape...
Soil-climate for Managing Sagebrush Ecosystems

Soil-climate for Managing Sagebrush Ecosystems

Soil-climate describes the temperature and moisture conditions important for plant growth and function. Soil condition patterns determine which vegetation is most abundant, thus controlling which habitats, invasive species, fuels, and economic activities are present in a region. Here, we use a model to simulate the vertical movement of water in a soil profile to provide insights into landscape...
Learn More

Climate Averages of Soil-climate for Sagebrush Ecosystems

Soil conditions are a key part of functioning ecosystem and affect the distribution and abundance of plants, forage production, and habitat patterns. The distribution of soil conditions, as well as other environmental factors such as precipitation, temperature, geology, topography, and vegetation determine the patterns and dynamics of wildlife habitats and biodiversity across the landscape. We...
Climate Averages of Soil-climate for Sagebrush Ecosystems

Climate Averages of Soil-climate for Sagebrush Ecosystems

Soil conditions are a key part of functioning ecosystem and affect the distribution and abundance of plants, forage production, and habitat patterns. The distribution of soil conditions, as well as other environmental factors such as precipitation, temperature, geology, topography, and vegetation determine the patterns and dynamics of wildlife habitats and biodiversity across the landscape. We...
Learn More

Forecasting the Spatiotemporal Dynamics of Sagebrush in Wyoming Under a Changing Climate

Prioritizing landscapes for sage-grouse habitat conservation is complicated by long-term changes in climate.
Forecasting the Spatiotemporal Dynamics of Sagebrush in Wyoming Under a Changing Climate

Forecasting the Spatiotemporal Dynamics of Sagebrush in Wyoming Under a Changing Climate

Prioritizing landscapes for sage-grouse habitat conservation is complicated by long-term changes in climate.
Learn More

The Western Mountain Initiative (WMI)

Western Mountain Initiative (WMI) is a long-term collaboration between FORT, WERC, NOROCK, USFS, NPS, LANL, and universities worldwide to address changes in montane forests and watersheds due to climate change. Current emphases include altered forest disturbance regimes (fire, die-off, insect outbreaks) and hydrology; interactions between plants, water, snow, nutrient cycles, and climate; and...
The Western Mountain Initiative (WMI)

The Western Mountain Initiative (WMI)

Western Mountain Initiative (WMI) is a long-term collaboration between FORT, WERC, NOROCK, USFS, NPS, LANL, and universities worldwide to address changes in montane forests and watersheds due to climate change. Current emphases include altered forest disturbance regimes (fire, die-off, insect outbreaks) and hydrology; interactions between plants, water, snow, nutrient cycles, and climate; and...
Learn More

Western Mountain Initiative: Southern Rocky Mountains

Mountain ecosystems of the western U.S. provide irreplaceable goods and services such as water, wood, biodiversity, and recreational opportunities, but their potential responses to projected climatic patterns are poorly understood. The overarching objective of the Western Mountain Initiative (WMI) is to understand and predict the responses—emphasizing sensitivities, thresholds, resistance, and...
Western Mountain Initiative: Southern Rocky Mountains

Western Mountain Initiative: Southern Rocky Mountains

Mountain ecosystems of the western U.S. provide irreplaceable goods and services such as water, wood, biodiversity, and recreational opportunities, but their potential responses to projected climatic patterns are poorly understood. The overarching objective of the Western Mountain Initiative (WMI) is to understand and predict the responses—emphasizing sensitivities, thresholds, resistance, and...
Learn More

Western Mountain Initiative: Colorado

Mountain ecosystems of the western U.S. provide irreplaceable goods and services such as water, wood, biodiversity, and recreational opportunities, but their potential responses to anticipated climatic changes are poorly understood. The overarching objective of the Western Mountain Initiative (WMI) is to understand and predict the responses, emphasizing sensitivities, thresholds, resistance, and...
Western Mountain Initiative: Colorado

Western Mountain Initiative: Colorado

Mountain ecosystems of the western U.S. provide irreplaceable goods and services such as water, wood, biodiversity, and recreational opportunities, but their potential responses to anticipated climatic changes are poorly understood. The overarching objective of the Western Mountain Initiative (WMI) is to understand and predict the responses, emphasizing sensitivities, thresholds, resistance, and...
Learn More
Was this page helpful?