The Implications of Stream Fragmentation for Climate Change Resilience of Northern Prairie Fishes
Active
By Climate Adaptation Science Centers
December 31, 2021
Dry stream sections are characteristic of most prairie streams. Native fish are highly adapted to variable environments, using refuge habitats (e.g., remaining wet stream fragments) to recolonize areas after seasonal drying. However, dams and other barriers can prevent recolonization of seasonally-dry stream sections habitats known to be critical spawning and rearing areas for many species. This phenomenon will likely become more common as climate change causes increasingly severe droughts, and larger sections of streams become seasonally dry. This could lead to local loss of native prairie fishes, an already at-risk group.
Fisheries managers in Wyoming and Montana have limited data on climate impacts to prairie fishes, limiting their ability to prioritize management actions. This is in part because the ecology and possible climate adaptation strategies for many prairie fishes are poorly understood. Managers also have limited time to assess the success of potential restoration actions to increase fish resilience to seasonal drying and ways to increase refuge habitat. This project aims to provide landscape-level maps and resources that will help managers prioritize where and for which species management actions, such as water and habitat conservation and restoration measures, could be most beneficial.
A research team will assess which species are most sensitive to drought in addition to expanding a newly created model of streamflow permanence to map drought refuges for vulnerable species. The project will also monitor stream restoration case studies to determine if process-based restoration techniques can be used to increase streamflow permanence and connectivity. Lastly, this work will be leveraged to create a short, species-specific guide to climate adaptation techniques. This guide will help agencies, landowners, conservation districts, and public interest groups determine what can be done to benefit at-risk species in their area of interest.
Fisheries managers in Wyoming and Montana have limited data on climate impacts to prairie fishes, limiting their ability to prioritize management actions. This is in part because the ecology and possible climate adaptation strategies for many prairie fishes are poorly understood. Managers also have limited time to assess the success of potential restoration actions to increase fish resilience to seasonal drying and ways to increase refuge habitat. This project aims to provide landscape-level maps and resources that will help managers prioritize where and for which species management actions, such as water and habitat conservation and restoration measures, could be most beneficial.
A research team will assess which species are most sensitive to drought in addition to expanding a newly created model of streamflow permanence to map drought refuges for vulnerable species. The project will also monitor stream restoration case studies to determine if process-based restoration techniques can be used to increase streamflow permanence and connectivity. Lastly, this work will be leveraged to create a short, species-specific guide to climate adaptation techniques. This guide will help agencies, landowners, conservation districts, and public interest groups determine what can be done to benefit at-risk species in their area of interest.
- Source: USGS Sciencebase (id: 624f246ad34e21f82769aa06)
Dry stream sections are characteristic of most prairie streams. Native fish are highly adapted to variable environments, using refuge habitats (e.g., remaining wet stream fragments) to recolonize areas after seasonal drying. However, dams and other barriers can prevent recolonization of seasonally-dry stream sections habitats known to be critical spawning and rearing areas for many species. This phenomenon will likely become more common as climate change causes increasingly severe droughts, and larger sections of streams become seasonally dry. This could lead to local loss of native prairie fishes, an already at-risk group.
Fisheries managers in Wyoming and Montana have limited data on climate impacts to prairie fishes, limiting their ability to prioritize management actions. This is in part because the ecology and possible climate adaptation strategies for many prairie fishes are poorly understood. Managers also have limited time to assess the success of potential restoration actions to increase fish resilience to seasonal drying and ways to increase refuge habitat. This project aims to provide landscape-level maps and resources that will help managers prioritize where and for which species management actions, such as water and habitat conservation and restoration measures, could be most beneficial.
A research team will assess which species are most sensitive to drought in addition to expanding a newly created model of streamflow permanence to map drought refuges for vulnerable species. The project will also monitor stream restoration case studies to determine if process-based restoration techniques can be used to increase streamflow permanence and connectivity. Lastly, this work will be leveraged to create a short, species-specific guide to climate adaptation techniques. This guide will help agencies, landowners, conservation districts, and public interest groups determine what can be done to benefit at-risk species in their area of interest.
Fisheries managers in Wyoming and Montana have limited data on climate impacts to prairie fishes, limiting their ability to prioritize management actions. This is in part because the ecology and possible climate adaptation strategies for many prairie fishes are poorly understood. Managers also have limited time to assess the success of potential restoration actions to increase fish resilience to seasonal drying and ways to increase refuge habitat. This project aims to provide landscape-level maps and resources that will help managers prioritize where and for which species management actions, such as water and habitat conservation and restoration measures, could be most beneficial.
A research team will assess which species are most sensitive to drought in addition to expanding a newly created model of streamflow permanence to map drought refuges for vulnerable species. The project will also monitor stream restoration case studies to determine if process-based restoration techniques can be used to increase streamflow permanence and connectivity. Lastly, this work will be leveraged to create a short, species-specific guide to climate adaptation techniques. This guide will help agencies, landowners, conservation districts, and public interest groups determine what can be done to benefit at-risk species in their area of interest.
- Source: USGS Sciencebase (id: 624f246ad34e21f82769aa06)