Forecasting barrier island evolution provides coastal managers and stakeholders the ability to assess the resiliency of these important coastal environments that are home to both established communities and existing natural habitats. This study uses an established coupled model framework to assess how Dauphin Island, Alabama, responds to various storm and sea-level change scenarios, along with a suite of restoration measures, over the course of a decade. The coupled model framework uses validated models for long-term alongshore sediment transport (Delft 3D), short-term storm induced impacts (XBeach), as well as dune building and recovery (empirical dune growth model). This model framework was simulated with the various storm and sea-level change scenarios on a non-restored Dauphin Island, then a subset of the storm and sea-level change scenarios were applied to a suite of seven different restoration measures to determine how they would influence the morphologic evolution over a decadal period. Topographic and bathymetric changes captured in post-simulation digital elevation models were then passed on to partners for various simulations to determine the effects on habitat evolution and water quality as it relates to oyster reef and submerged aquatic vegetation.
Citation Information
Publication Year | 2020 |
---|---|
Title | Application of decadal modeling approach to forecast barrier island evolution, Dauphin Island, Alabama |
DOI | 10.3133/ofr20201001 |
Authors | Rangley C. Mickey, Elizabeth Godsey, P. Soupy Dalyander, Victor Gonzalez, Robert L. Jenkins, Joseph W. Long, David M. Thompson, Nathaniel G. Plant |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Open-File Report |
Series Number | 2020-1001 |
Index ID | ofr20201001 |
Record Source | USGS Publications Warehouse |
USGS Organization | St. Petersburg Coastal and Marine Science Center |
Related Content
Dauphin Island Decadal Forecast Evolution Model Inputs and Results
Rangley Mickey
Oceanographer
Patricia (Soupy) Dalyander (Former Employee)
Research Oceanographer
Joseph Long (Former Employee)
Research Oceanographer
David Thompson
Physical Scientist
Nathaniel Plant, Ph.D.
Center Director
Related Content
- Data
Dauphin Island Decadal Forecast Evolution Model Inputs and Results
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020-1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of m - Connect
Rangley Mickey
OceanographerEmailPhonePatricia (Soupy) Dalyander (Former Employee)
Research OceanographerJoseph Long (Former Employee)
Research OceanographerDavid Thompson
Physical ScientistEmailPhoneNathaniel Plant, Ph.D.
Center DirectorEmailPhone