Robert Jenkins
Robert Jenkins is a Physical Scientist at the St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida.
Science and Products
Estuarine Shoreline, Upland Boundary, and Marsh Habitat Change Analyses for the Point Aux Chenes and Grand Bay Estuary Systems, Mississippi and Alabama
Coastal marshes across the Northern Gulf of Mexico are critical ecosystems, providing wildlife habitat, nursery for many species of fish, a carbon sink, and protection of communities from storm surge, but are vulnerable to coastal hazards, such as wave attack, sea level rise, and subsidence. While many marshes accrete vertically to compensate for rising sea level, marsh loss can occur...
Detailed Grain-Size Data of Estuarine, Barrier Island, and Shoreface Environments Around Dauphin Island, Alabama, USA
In 2015, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted sediment sampling surveys on and around the barrier islands of Dauphin Island and Little Dauphin Island, Mobile County, Alabama (AL). The study investigated the surficial sediment surrounding Dauphin Island and surrounding environments to inform sediment transport...
Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output
The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, (Alabama) were modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island...
Modeling the Effects of Large-scale Interior Headland Restoration on Tidal Hydrodynamics and Salinity Transport in an Open Coast, Marine-dominant Estuary: Model Input and Results
The effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in the Grand Bay, Alabama (AL) estuary was assessed using a two-dimensional Discontinous-Galerkin Shallow Water Equations (DG-SWEM) model. Three restoration alternatives were simulated: 1) no action (herein referred to as na); 2) reconstruction of the Grand Batture Island (herein...
Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment...
Assessing habitat change and migration of barrier islands
A barrier island habitat prediction model was used to forecast barrier island habitats (for example, beach, dune, intertidal marsh, and woody vegetation) for Dauphin Island, Alabama, based on potential island configurations associated with a variety of restoration measures and varying future conditions of storminess and sea level (Enwright and others, 2020). This USGS data release...
Dauphin Island Decadal Forecast Evolution Model Inputs and Results
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020-1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and...
Dauphin Island Decadal Hindcast Model Inputs and Results
The model input and output of bathymetry and topography elevations resulting from a deterministic simulation from 2004 to 2015 at Dauphin Island, Alabama, as described in Mickey and others (2020), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). For more information...
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results
The Delft3D model inputs and outputs of bed levels resulting from the simulations of proposed navigation channel deepening and widening in Mobile Harbor, Alabama, as described in USGS Open-File Report 2018-1123, are provided here. For further information regarding model input generation and visualization of model output elevations, refer to USGS Open-File Report 2018-1123.
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data
The U.S. Geological Survey conducted experiments during March of 2014 to expand the available data on sand and oil agglomerate motion; test shear stress based incipient motion parameterizations in a controlled, laboratory setting; and directly observe sand and oil agglomerate exhumation and burial processes. Experiments were carried out at the Naval Research Laboratory, Stennis Space...
Model sensitivity analysis for coastal morphodynamics: Investigating sediment parameters and bed composition in Delft3D
Numerical simulation of sediment transport and subsequent morphological evolution rely on accurate parameterizations of sediment characteristics. However, these data are often not available or are spatially and/or temporally limited. This study approaches the problem of limited sediment grain-size data with a series of simulations assessing model sensitivity to sediment parameters and...
Authors
Robert L. Jenkins, Christopher G. Smith, Davina Passeri, Alisha M. Ellis
Modeling the effects of interior headland restoration on estuarine sediment transport processes in a marine-dominant estuary
The effects of interior headland restoration on estuarine sediment transport processes were assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) were modeled using Delft3D to understand impacts on suspended sediment concentrations, bed level morphology, and sediment fluxes under present...
Authors
Robert L. Jenkins, Davina Passeri, Christopher G. Smith, David M. Thompson, Kathryn Smith
Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary
The effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine dominant estuary (Grand Bay, Alabama, U.S.A) are investigated using a two-dimensional model, the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM). Three restoration alternatives are simulated for present-day conditions, as well as under 0.5 m of...
Authors
Davina Passeri, Robert L. Jenkins, Autumn C. Poisson, Matthew V. Bilskie, Peter Bacopoulos
Assessing habitat change and migration of barrier islands
Barrier islands are dynamic environments that experience gradual change from waves, tides, and currents, and rapid change from extreme storms. These islands are expected to change drastically over the coming century due to accelerated sea-level rise and changes in frequency and intensity of storm events. The dynamic nature of barrier islands coupled with the importance of these...
Authors
Nicholas Enwright, Lei Wang, P. Soupy Dalyander, Hongqing Wang, Michael Osland, Rangley C. Mickey, Robert L. Jenkins, Elizabeth Godsey
The roles of storminess and sea level rise in decadal barrier island evolution
Models of alongshore sediment transport during quiescent conditions, storm‐driven barrier island morphology, and poststorm dune recovery are integrated to assess decadal barrier island evolution under scenarios of increased sea levels and variability in storminess (intensity and frequency). Model results indicate barrier island response regimes of keeping pace, narrowing, flattening...
Authors
Davina Passeri, P. Soupy Dalyander, Joseph W. Long, Rangley C. Mickey, Robert L. Jenkins, David M. Thompson, Nathaniel G. Plant, Elizabeth Godsey, Victor Gonzalez
Development of a modeling framework for predicting decadal barrier island evolution
Predicting the decadal evolution of barrier island systems is important for coastal managers who propose restoration or preservation alternatives aimed at increasing the resiliency of the island and its associated habitats or communities. Existing numerical models for simulating morphologic changes typically include either long-term (for example, longshore transport under quiescent...
Authors
Rangley C. Mickey, Joseph W. Long, P. Soupy Dalyander, Robert L. Jenkins, David M. Thompson, Davina Passeri, Nathaniel G. Plant
Application of decadal modeling approach to forecast barrier island evolution, Dauphin Island, Alabama
Forecasting barrier island evolution provides coastal managers and stakeholders the ability to assess the resiliency of these important coastal environments that are home to both established communities and existing natural habitats. This study uses an established coupled model framework to assess how Dauphin Island, Alabama, responds to various storm and sea-level change scenarios...
Authors
Rangley C. Mickey, Elizabeth Godsey, P. Soupy Dalyander, Victor Gonzalez, Robert L. Jenkins, Joseph W. Long, David M. Thompson, Nathaniel G. Plant
Development of a process-based littoral sediment transport model for Dauphin Island, Alabama
Dauphin Island, Alabama, located in the Northern Gulf of Mexico just outside of Mobile Bay, is Alabama’s only barrier island and provides an array of historical, natural, and economic resources. The dynamic island shoreline of Dauphin Island evolved across time scales while constantly acted upon by waves and currents during both storms and calm periods. Reductions in the vulnerability...
Authors
Robert L. Jenkins, Joseph W. Long, P. Soupy Dalyander, David M. Thompson, Rangley C. Mickey
Effects of proposed navigation channel improvements on sediment transport in Mobile Harbor, Alabama
A Delft3D model was developed to evaluate the potential effects of proposed navigationchannel deepening and widening in Mobile Harbor, Alabama. The model performance wasassessed through comparisons of modeled and observed data of water levels, velocities, and bedlevel changes; the model captured hydrodynamic and sediment transport patterns in the studyarea with skill. The validated model...
Authors
Davina Passeri, Joseph W. Long, Robert L. Jenkins, David M. Thompson
Laboratory observations of artificial sand and oil agglomerates
Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil...
Authors
Robert L. Jenkins, P. Soupy Dalyander, Allison Penko, Joseph W. Long
Science and Products
Estuarine Shoreline, Upland Boundary, and Marsh Habitat Change Analyses for the Point Aux Chenes and Grand Bay Estuary Systems, Mississippi and Alabama
Coastal marshes across the Northern Gulf of Mexico are critical ecosystems, providing wildlife habitat, nursery for many species of fish, a carbon sink, and protection of communities from storm surge, but are vulnerable to coastal hazards, such as wave attack, sea level rise, and subsidence. While many marshes accrete vertically to compensate for rising sea level, marsh loss can occur...
Detailed Grain-Size Data of Estuarine, Barrier Island, and Shoreface Environments Around Dauphin Island, Alabama, USA
In 2015, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted sediment sampling surveys on and around the barrier islands of Dauphin Island and Little Dauphin Island, Mobile County, Alabama (AL). The study investigated the surficial sediment surrounding Dauphin Island and surrounding environments to inform sediment transport...
Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output
The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, (Alabama) were modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island...
Modeling the Effects of Large-scale Interior Headland Restoration on Tidal Hydrodynamics and Salinity Transport in an Open Coast, Marine-dominant Estuary: Model Input and Results
The effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in the Grand Bay, Alabama (AL) estuary was assessed using a two-dimensional Discontinous-Galerkin Shallow Water Equations (DG-SWEM) model. Three restoration alternatives were simulated: 1) no action (herein referred to as na); 2) reconstruction of the Grand Batture Island (herein...
Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment...
Assessing habitat change and migration of barrier islands
A barrier island habitat prediction model was used to forecast barrier island habitats (for example, beach, dune, intertidal marsh, and woody vegetation) for Dauphin Island, Alabama, based on potential island configurations associated with a variety of restoration measures and varying future conditions of storminess and sea level (Enwright and others, 2020). This USGS data release...
Dauphin Island Decadal Forecast Evolution Model Inputs and Results
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020-1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and...
Dauphin Island Decadal Hindcast Model Inputs and Results
The model input and output of bathymetry and topography elevations resulting from a deterministic simulation from 2004 to 2015 at Dauphin Island, Alabama, as described in Mickey and others (2020), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). For more information...
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results
The Delft3D model inputs and outputs of bed levels resulting from the simulations of proposed navigation channel deepening and widening in Mobile Harbor, Alabama, as described in USGS Open-File Report 2018-1123, are provided here. For further information regarding model input generation and visualization of model output elevations, refer to USGS Open-File Report 2018-1123.
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data
The U.S. Geological Survey conducted experiments during March of 2014 to expand the available data on sand and oil agglomerate motion; test shear stress based incipient motion parameterizations in a controlled, laboratory setting; and directly observe sand and oil agglomerate exhumation and burial processes. Experiments were carried out at the Naval Research Laboratory, Stennis Space...
Model sensitivity analysis for coastal morphodynamics: Investigating sediment parameters and bed composition in Delft3D
Numerical simulation of sediment transport and subsequent morphological evolution rely on accurate parameterizations of sediment characteristics. However, these data are often not available or are spatially and/or temporally limited. This study approaches the problem of limited sediment grain-size data with a series of simulations assessing model sensitivity to sediment parameters and...
Authors
Robert L. Jenkins, Christopher G. Smith, Davina Passeri, Alisha M. Ellis
Modeling the effects of interior headland restoration on estuarine sediment transport processes in a marine-dominant estuary
The effects of interior headland restoration on estuarine sediment transport processes were assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) were modeled using Delft3D to understand impacts on suspended sediment concentrations, bed level morphology, and sediment fluxes under present...
Authors
Robert L. Jenkins, Davina Passeri, Christopher G. Smith, David M. Thompson, Kathryn Smith
Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary
The effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine dominant estuary (Grand Bay, Alabama, U.S.A) are investigated using a two-dimensional model, the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM). Three restoration alternatives are simulated for present-day conditions, as well as under 0.5 m of...
Authors
Davina Passeri, Robert L. Jenkins, Autumn C. Poisson, Matthew V. Bilskie, Peter Bacopoulos
Assessing habitat change and migration of barrier islands
Barrier islands are dynamic environments that experience gradual change from waves, tides, and currents, and rapid change from extreme storms. These islands are expected to change drastically over the coming century due to accelerated sea-level rise and changes in frequency and intensity of storm events. The dynamic nature of barrier islands coupled with the importance of these...
Authors
Nicholas Enwright, Lei Wang, P. Soupy Dalyander, Hongqing Wang, Michael Osland, Rangley C. Mickey, Robert L. Jenkins, Elizabeth Godsey
The roles of storminess and sea level rise in decadal barrier island evolution
Models of alongshore sediment transport during quiescent conditions, storm‐driven barrier island morphology, and poststorm dune recovery are integrated to assess decadal barrier island evolution under scenarios of increased sea levels and variability in storminess (intensity and frequency). Model results indicate barrier island response regimes of keeping pace, narrowing, flattening...
Authors
Davina Passeri, P. Soupy Dalyander, Joseph W. Long, Rangley C. Mickey, Robert L. Jenkins, David M. Thompson, Nathaniel G. Plant, Elizabeth Godsey, Victor Gonzalez
Development of a modeling framework for predicting decadal barrier island evolution
Predicting the decadal evolution of barrier island systems is important for coastal managers who propose restoration or preservation alternatives aimed at increasing the resiliency of the island and its associated habitats or communities. Existing numerical models for simulating morphologic changes typically include either long-term (for example, longshore transport under quiescent...
Authors
Rangley C. Mickey, Joseph W. Long, P. Soupy Dalyander, Robert L. Jenkins, David M. Thompson, Davina Passeri, Nathaniel G. Plant
Application of decadal modeling approach to forecast barrier island evolution, Dauphin Island, Alabama
Forecasting barrier island evolution provides coastal managers and stakeholders the ability to assess the resiliency of these important coastal environments that are home to both established communities and existing natural habitats. This study uses an established coupled model framework to assess how Dauphin Island, Alabama, responds to various storm and sea-level change scenarios...
Authors
Rangley C. Mickey, Elizabeth Godsey, P. Soupy Dalyander, Victor Gonzalez, Robert L. Jenkins, Joseph W. Long, David M. Thompson, Nathaniel G. Plant
Development of a process-based littoral sediment transport model for Dauphin Island, Alabama
Dauphin Island, Alabama, located in the Northern Gulf of Mexico just outside of Mobile Bay, is Alabama’s only barrier island and provides an array of historical, natural, and economic resources. The dynamic island shoreline of Dauphin Island evolved across time scales while constantly acted upon by waves and currents during both storms and calm periods. Reductions in the vulnerability...
Authors
Robert L. Jenkins, Joseph W. Long, P. Soupy Dalyander, David M. Thompson, Rangley C. Mickey
Effects of proposed navigation channel improvements on sediment transport in Mobile Harbor, Alabama
A Delft3D model was developed to evaluate the potential effects of proposed navigationchannel deepening and widening in Mobile Harbor, Alabama. The model performance wasassessed through comparisons of modeled and observed data of water levels, velocities, and bedlevel changes; the model captured hydrodynamic and sediment transport patterns in the studyarea with skill. The validated model...
Authors
Davina Passeri, Joseph W. Long, Robert L. Jenkins, David M. Thompson
Laboratory observations of artificial sand and oil agglomerates
Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil...
Authors
Robert L. Jenkins, P. Soupy Dalyander, Allison Penko, Joseph W. Long