Scientists RC Mickey and Dave Thompson from the USGS St.
David Thompson
David Thompson is a Physical Scientist at the St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida.
Science and Products
Nearshore Multibeam and Single-beam Bathymetry Data: Madeira Beach, Florida, February 2017
In February 2017, the United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted multibeam and single-beam bathymetric surveys of the nearshore waters off the coast of Madeira Beach, Florida. These data were collected as part of a regional study designed to better understand coastal processes on barrier islands and sandy beaches. Results...
Beach Profile Data Collected From Sand Key Beach in Clearwater, Florida
This dataset, prepared by the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a surveying backpack outfitted for surveying location and elevation data (XYZ) along...
Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment...
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Puerto Rico
These datasets contain information on the probabilities of hurricane-induced erosion (collision, inundation, and overwash) for each 100-meter (m) section of the Puerto Rico open-ocean coastline for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model (Sallenger, 2000; https://www.jstor.org/stable/4300099) that uses observations of beach morphology combined with...
Beach Profile Data Collected from Madeira Beach, Florida
This dataset, prepared by the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center, provides beach profile data collected at Madeira Beach, Florida. Data were collected by a walking person equipped with a Global Positioning System receiver and a GPS antenna affixed to a surveying backpack. The horizontal position data are given in the Universal Transverse Mercator (UTM...
Dauphin Island Decadal Forecast Evolution Model Inputs and Results
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020-1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and...
Dauphin Island Decadal Hindcast Model Inputs and Results
The model input and output of bathymetry and topography elevations resulting from a deterministic simulation from 2004 to 2015 at Dauphin Island, Alabama, as described in Mickey and others (2020), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). For more information...
Storm-Induced Coastal Change Forecasts: Archive of Individual Storm Events
These data sets contain information on the probabilities of storm-induced erosion (collision, inundation and overwash) on sandy beaches along the U.S. Gulf and Atlantic coasts during real-time peak forecast conditions. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast...
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results
The Delft3D model inputs and outputs of bed levels resulting from the simulations of proposed navigation channel deepening and widening in Mobile Harbor, Alabama, as described in USGS Open-File Report 2018-1123, are provided here. For further information regarding model input generation and visualization of model output elevations, refer to USGS Open-File Report 2018-1123.
Storm-Impact Scenario XBeach Model Inputs and Results
The XBeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017-1009 (https://doi.org/10.3133/ofr20171009), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to USGS Open...
National Assessment of Hurricane-Induced Coastal Erosion Hazards: South Carolina to New Hampshire update
These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the U.S. coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct...
Cape Canaveral, Florida 2010 Single-beam Bathymetry Data
Single-beam bathymetric surveys were conducted on July 27-29, 2010 along 37 cross-shore transects offshore from Cape Canaveral, Fla. The transects were spaced 500 m apart in the alongshore direction and each was approximately 5 km long in the cross-shore.
Filter Total Items: 32
Modeling the effects of interior headland restoration on estuarine sediment transport processes in a marine-dominant estuary
The effects of interior headland restoration on estuarine sediment transport processes were assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) were modeled using Delft3D to understand impacts on suspended sediment concentrations, bed level morphology, and sediment fluxes under present...
Authors
Robert L. Jenkins, Davina Passeri, Christopher G. Smith, David M. Thompson, Kathryn Smith
The roles of storminess and sea level rise in decadal barrier island evolution
Models of alongshore sediment transport during quiescent conditions, storm‐driven barrier island morphology, and poststorm dune recovery are integrated to assess decadal barrier island evolution under scenarios of increased sea levels and variability in storminess (intensity and frequency). Model results indicate barrier island response regimes of keeping pace, narrowing, flattening...
Authors
Davina Passeri, P. Soupy Dalyander, Joseph W. Long, Rangley C. Mickey, Robert L. Jenkins, David M. Thompson, Nathaniel G. Plant, Elizabeth Godsey, Victor Gonzalez
Application of decadal modeling approach to forecast barrier island evolution, Dauphin Island, Alabama
Forecasting barrier island evolution provides coastal managers and stakeholders the ability to assess the resiliency of these important coastal environments that are home to both established communities and existing natural habitats. This study uses an established coupled model framework to assess how Dauphin Island, Alabama, responds to various storm and sea-level change scenarios...
Authors
Rangley C. Mickey, Elizabeth Godsey, P. Soupy Dalyander, Victor Gonzalez, Robert L. Jenkins, Joseph W. Long, David M. Thompson, Nathaniel G. Plant
Development of a modeling framework for predicting decadal barrier island evolution
Predicting the decadal evolution of barrier island systems is important for coastal managers who propose restoration or preservation alternatives aimed at increasing the resiliency of the island and its associated habitats or communities. Existing numerical models for simulating morphologic changes typically include either long-term (for example, longshore transport under quiescent...
Authors
Rangley C. Mickey, Joseph W. Long, P. Soupy Dalyander, Robert L. Jenkins, David M. Thompson, Davina Passeri, Nathaniel G. Plant
Development of a process-based littoral sediment transport model for Dauphin Island, Alabama
Dauphin Island, Alabama, located in the Northern Gulf of Mexico just outside of Mobile Bay, is Alabama’s only barrier island and provides an array of historical, natural, and economic resources. The dynamic island shoreline of Dauphin Island evolved across time scales while constantly acted upon by waves and currents during both storms and calm periods. Reductions in the vulnerability...
Authors
Robert L. Jenkins, Joseph W. Long, P. Soupy Dalyander, David M. Thompson, Rangley C. Mickey
Forecasting future beach width- A case study along the Florida Atlantic coast
Historical cross-shore positions of the shoreline and dune base were used as inputs for a Kalman filter algorithm to forecast the positions of these features in the year 2028. The beach width was also computed as the cross-shore distance between the forecasted 2028 shoreline and dune-base positions. While it does not evaluate the suitability of a nesting beach or identify optimal nesting...
Authors
Joseph W. Long, Rachel E. Henderson, David M. Thompson
Event and decadal-scale modeling of barrier island restoration designs for decision support
An interdisciplinary project team was convened to develop a modeling framework that simulates the potential impacts of storms and sea level-rise to habitat availability at Breton Island, Louisiana (Breton) for existing conditions and potential future restoration designs. The model framework was iteratively developed through evaluation of model results at multiple checkpoints. A...
Authors
Joseph W. Long, P. Soupy Dalyander, Michael Poff, Brian Spears, Brett Borne, David M. Thompson, Rangley C. Mickey, Steve Dartez, Gregory Gandy
Comparison of methods for modeling fractional cover using simulated satellite hyperspectral imager spectra
Remotely sensed data can be used to model the fractional cover of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil in natural and agricultural ecosystems. NPV and soil cover are difficult to estimate accurately since absorption by lignin, cellulose, and other organic molecules cannot be resolved by broadband multispectral data. A new generation of satellite...
Authors
Philip E. Dennison, Yi Qi, Susan K. Meerdink, Raymond F. Kokaly, David R. Thompson, Craig S.T. Daughtry, Miguel Quemada, Dar A. Roberts, Paul Gader, Erin Wetherley, Izaya Numata, Keely L. Roth
Effects of proposed navigation channel improvements on sediment transport in Mobile Harbor, Alabama
A Delft3D model was developed to evaluate the potential effects of proposed navigationchannel deepening and widening in Mobile Harbor, Alabama. The model performance wasassessed through comparisons of modeled and observed data of water levels, velocities, and bedlevel changes; the model captured hydrodynamic and sediment transport patterns in the studyarea with skill. The validated model...
Authors
Davina Passeri, Joseph W. Long, Robert L. Jenkins, David M. Thompson
A framework for modeling scenario-based barrier island storm impacts
Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non...
Authors
Rangley C. Mickey, Joseph W. Long, P. Soupy Dalyander, Nathaniel G. Plant, David M. Thompson
Correction of elevation offsets in multiple co-located lidar datasets
IntroductionTopographic elevation data collected with airborne light detection and ranging (lidar) can be used to analyze short- and long-term changes to beach and dune systems. Analysis of multiple lidar datasets at Dauphin Island, Alabama, revealed systematic, island-wide elevation differences on the order of 10s of centimeters (cm) that were not attributable to real-world change and...
Authors
David M. Thompson, P. Soupy Dalyander, Joseph W. Long, Nathaniel G. Plant
A methodology for modeling barrier island storm-impact scenarios
A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island...
Authors
Rangley C. Mickey, Joseph W. Long, Nathaniel G. Plant, David M. Thompson, P. Soupy Dalyander
Science and Products
Nearshore Multibeam and Single-beam Bathymetry Data: Madeira Beach, Florida, February 2017
In February 2017, the United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted multibeam and single-beam bathymetric surveys of the nearshore waters off the coast of Madeira Beach, Florida. These data were collected as part of a regional study designed to better understand coastal processes on barrier islands and sandy beaches. Results...
Beach Profile Data Collected From Sand Key Beach in Clearwater, Florida
This dataset, prepared by the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a surveying backpack outfitted for surveying location and elevation data (XYZ) along...
Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment...
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Puerto Rico
These datasets contain information on the probabilities of hurricane-induced erosion (collision, inundation, and overwash) for each 100-meter (m) section of the Puerto Rico open-ocean coastline for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model (Sallenger, 2000; https://www.jstor.org/stable/4300099) that uses observations of beach morphology combined with...
Beach Profile Data Collected from Madeira Beach, Florida
This dataset, prepared by the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center, provides beach profile data collected at Madeira Beach, Florida. Data were collected by a walking person equipped with a Global Positioning System receiver and a GPS antenna affixed to a surveying backpack. The horizontal position data are given in the Universal Transverse Mercator (UTM...
Dauphin Island Decadal Forecast Evolution Model Inputs and Results
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020-1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and...
Dauphin Island Decadal Hindcast Model Inputs and Results
The model input and output of bathymetry and topography elevations resulting from a deterministic simulation from 2004 to 2015 at Dauphin Island, Alabama, as described in Mickey and others (2020), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). For more information...
Storm-Induced Coastal Change Forecasts: Archive of Individual Storm Events
These data sets contain information on the probabilities of storm-induced erosion (collision, inundation and overwash) on sandy beaches along the U.S. Gulf and Atlantic coasts during real-time peak forecast conditions. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast...
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results
The Delft3D model inputs and outputs of bed levels resulting from the simulations of proposed navigation channel deepening and widening in Mobile Harbor, Alabama, as described in USGS Open-File Report 2018-1123, are provided here. For further information regarding model input generation and visualization of model output elevations, refer to USGS Open-File Report 2018-1123.
Storm-Impact Scenario XBeach Model Inputs and Results
The XBeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017-1009 (https://doi.org/10.3133/ofr20171009), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to USGS Open...
National Assessment of Hurricane-Induced Coastal Erosion Hazards: South Carolina to New Hampshire update
These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the U.S. coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct...
Cape Canaveral, Florida 2010 Single-beam Bathymetry Data
Single-beam bathymetric surveys were conducted on July 27-29, 2010 along 37 cross-shore transects offshore from Cape Canaveral, Fla. The transects were spaced 500 m apart in the alongshore direction and each was approximately 5 km long in the cross-shore.
Filter Total Items: 32
Modeling the effects of interior headland restoration on estuarine sediment transport processes in a marine-dominant estuary
The effects of interior headland restoration on estuarine sediment transport processes were assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) were modeled using Delft3D to understand impacts on suspended sediment concentrations, bed level morphology, and sediment fluxes under present...
Authors
Robert L. Jenkins, Davina Passeri, Christopher G. Smith, David M. Thompson, Kathryn Smith
The roles of storminess and sea level rise in decadal barrier island evolution
Models of alongshore sediment transport during quiescent conditions, storm‐driven barrier island morphology, and poststorm dune recovery are integrated to assess decadal barrier island evolution under scenarios of increased sea levels and variability in storminess (intensity and frequency). Model results indicate barrier island response regimes of keeping pace, narrowing, flattening...
Authors
Davina Passeri, P. Soupy Dalyander, Joseph W. Long, Rangley C. Mickey, Robert L. Jenkins, David M. Thompson, Nathaniel G. Plant, Elizabeth Godsey, Victor Gonzalez
Application of decadal modeling approach to forecast barrier island evolution, Dauphin Island, Alabama
Forecasting barrier island evolution provides coastal managers and stakeholders the ability to assess the resiliency of these important coastal environments that are home to both established communities and existing natural habitats. This study uses an established coupled model framework to assess how Dauphin Island, Alabama, responds to various storm and sea-level change scenarios...
Authors
Rangley C. Mickey, Elizabeth Godsey, P. Soupy Dalyander, Victor Gonzalez, Robert L. Jenkins, Joseph W. Long, David M. Thompson, Nathaniel G. Plant
Development of a modeling framework for predicting decadal barrier island evolution
Predicting the decadal evolution of barrier island systems is important for coastal managers who propose restoration or preservation alternatives aimed at increasing the resiliency of the island and its associated habitats or communities. Existing numerical models for simulating morphologic changes typically include either long-term (for example, longshore transport under quiescent...
Authors
Rangley C. Mickey, Joseph W. Long, P. Soupy Dalyander, Robert L. Jenkins, David M. Thompson, Davina Passeri, Nathaniel G. Plant
Development of a process-based littoral sediment transport model for Dauphin Island, Alabama
Dauphin Island, Alabama, located in the Northern Gulf of Mexico just outside of Mobile Bay, is Alabama’s only barrier island and provides an array of historical, natural, and economic resources. The dynamic island shoreline of Dauphin Island evolved across time scales while constantly acted upon by waves and currents during both storms and calm periods. Reductions in the vulnerability...
Authors
Robert L. Jenkins, Joseph W. Long, P. Soupy Dalyander, David M. Thompson, Rangley C. Mickey
Forecasting future beach width- A case study along the Florida Atlantic coast
Historical cross-shore positions of the shoreline and dune base were used as inputs for a Kalman filter algorithm to forecast the positions of these features in the year 2028. The beach width was also computed as the cross-shore distance between the forecasted 2028 shoreline and dune-base positions. While it does not evaluate the suitability of a nesting beach or identify optimal nesting...
Authors
Joseph W. Long, Rachel E. Henderson, David M. Thompson
Event and decadal-scale modeling of barrier island restoration designs for decision support
An interdisciplinary project team was convened to develop a modeling framework that simulates the potential impacts of storms and sea level-rise to habitat availability at Breton Island, Louisiana (Breton) for existing conditions and potential future restoration designs. The model framework was iteratively developed through evaluation of model results at multiple checkpoints. A...
Authors
Joseph W. Long, P. Soupy Dalyander, Michael Poff, Brian Spears, Brett Borne, David M. Thompson, Rangley C. Mickey, Steve Dartez, Gregory Gandy
Comparison of methods for modeling fractional cover using simulated satellite hyperspectral imager spectra
Remotely sensed data can be used to model the fractional cover of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil in natural and agricultural ecosystems. NPV and soil cover are difficult to estimate accurately since absorption by lignin, cellulose, and other organic molecules cannot be resolved by broadband multispectral data. A new generation of satellite...
Authors
Philip E. Dennison, Yi Qi, Susan K. Meerdink, Raymond F. Kokaly, David R. Thompson, Craig S.T. Daughtry, Miguel Quemada, Dar A. Roberts, Paul Gader, Erin Wetherley, Izaya Numata, Keely L. Roth
Effects of proposed navigation channel improvements on sediment transport in Mobile Harbor, Alabama
A Delft3D model was developed to evaluate the potential effects of proposed navigationchannel deepening and widening in Mobile Harbor, Alabama. The model performance wasassessed through comparisons of modeled and observed data of water levels, velocities, and bedlevel changes; the model captured hydrodynamic and sediment transport patterns in the studyarea with skill. The validated model...
Authors
Davina Passeri, Joseph W. Long, Robert L. Jenkins, David M. Thompson
A framework for modeling scenario-based barrier island storm impacts
Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non...
Authors
Rangley C. Mickey, Joseph W. Long, P. Soupy Dalyander, Nathaniel G. Plant, David M. Thompson
Correction of elevation offsets in multiple co-located lidar datasets
IntroductionTopographic elevation data collected with airborne light detection and ranging (lidar) can be used to analyze short- and long-term changes to beach and dune systems. Analysis of multiple lidar datasets at Dauphin Island, Alabama, revealed systematic, island-wide elevation differences on the order of 10s of centimeters (cm) that were not attributable to real-world change and...
Authors
David M. Thompson, P. Soupy Dalyander, Joseph W. Long, Nathaniel G. Plant
A methodology for modeling barrier island storm-impact scenarios
A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island...
Authors
Rangley C. Mickey, Joseph W. Long, Nathaniel G. Plant, David M. Thompson, P. Soupy Dalyander