Skip to main content
U.S. flag

An official website of the United States government

Positional accuracy assessment of lidar point cloud from NAIP/3DEP pilot project

June 19, 2020

The Leica Geosystems CountryMapper hybrid system has the potential to collect data that satisfy the U.S. Geological Survey (USGS) National Geospatial Program (NGP) and 3D Elevation Program (3DEP) and the U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) requirements in a single collection. This research will help 3DEP determine if this sensor has the potential to meet current and future 3DEP topographic lidar collection requirements. We performed an accuracy analysis and assessment on the lidar point cloud produced from CountryMapper. The boresighting calibration and co-registration by georeferencing correction based on ground control points are assumed to be performed by the data provider. The scope of the accuracy assessment is to apply the following variety of ways to measure the accuracy of the delivered point cloud to obtain the error statistics. Intraswath uncertainty from a flat surface was computed to evaluate the point cloud precision. Intraswath difference between opposite scan directions and the interswath overlap difference were evaluated to find boresighting or any systematic errors. Absolute vertical accuracy over vegetated and non-vegetated areas were also assessed. Both horizontal and vertical absolute errors were assessed using the 3D absolute error analysis methodology of comparing conjugate points derived from geometric features. A three-plane feature makes a single unique intersection point. Intersection points were computed from ground-based lidar and airborne lidar point clouds for comparison. The difference between two intersection points form one error vector. The geometric feature-based error analysis was applied to intraswath, interswath, and absolute error analysis. The CountryMapper pilot data appear to satisfy the accuracy requirements suggested by the USGS lidar specification, based upon the error analysis results. The focus of this research was to demonstrate various conventional accuracy measures and novel 3D accuracy techniques using two different error computation methods on the CountryMapper airborne lidar point cloud.

Publication Year 2020
Title Positional accuracy assessment of lidar point cloud from NAIP/3DEP pilot project
DOI 10.3390/rs12121974
Authors Minsu Kim, Seonkyung Park, Jeffrey Irwin, Collin McCormick, Jeffrey J. Danielson, Gregory L. Stensaas, Aparajithan Sampath, Mark A. Bauer, Matthew Alexander Burgess
Publication Type Article
Publication Subtype Journal Article
Series Title Remote Sensing
Index ID 70237278
Record Source USGS Publications Warehouse
USGS Organization Earth Resources Observation and Science (EROS) Center; Geosciences and Environmental Change Science Center