My research is focused on how to best describe the behavior of active faults in the recent past. I use methods such as paleoseismology, slip rate studies, topographic analysis, numerical modeling and tectonic reconstructions to understand how earthquakes occur in space and time, both on single faults and within larger fault systems.
Overall, I am interested in how faults evolve over time and characterizing variability and evolution of fault behavior on across different space-time scales. An overarching goal of my work is to understand how to represent geological constraints within hazard models, like the National Seismic Hazard Map and the Uniform California Earthquake Rupture Forecast.
Professional Experience
Research Geologist: USGS-GHSC, 2020-present
Mendenhall post-doctoral fellow: USGS-GHSC, 2019-2020
Education
PhD: University of Southern California, 2019
MS: University of Massachusetts, Amherst, 2014
BA: Wellesley College, 2012
Science and Products
Geodetic deformation model results and corrections for use in U.S. National Seismic Hazard Model 2023
Plotting multiple fault representations: Applications for National Seismic Hazard Model 2023 update (NSHM-faultmaps)
Compilation of geologic slip rate constraints used in 1996-2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022)
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022)
Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
Compilation of geologic slip rate constraints used in 1996 - 2014 U.S. National Seismic Hazard Maps
Surface Rupture Map of the 2020 M 6.5 Monte Cristo Range earthquake, Esmeralda and Mineral counties, Nevada
Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023
How similar was the 1983 Mw 6.9 Borah Peak earthquake rupture to its surface-faulting predecessors along the northern Lost River fault zone (Idaho, USA)?
STEPS: Slip time earthquake path simulations applied to the San Andreas and Toe Jam Hill Faults to redefine geologic slip rate uncertainty
Field response and surface rupture characteristics of the 2020 M6.5 Monte Cristo Range earthquake, central Walker Lane, Nevada
Documentation of Surface Fault Rupture and Ground‐Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence
Surface displacement distributions for the July 2019 Ridgecrest, California earthquake ruptures
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
STEPS: Slip Time Earthquake Path Simulations applied to the San Andreas and Toe Jam Hill faults to redefine geologic slip rate uncertainty (Matlab code)
Science and Products
- Data
Geodetic deformation model results and corrections for use in U.S. National Seismic Hazard Model 2023
This page houses model results used in the U.S. National Seismic Hazard Model, 2023. We include results from four geodetic deformation models (Pollitz, Zeng, Shen, Evans), post-seismic relaxation ("ghost transient") calculation (Hearn), and creep calculation (Johnson/Murray). Geologic deformation model results are available in Hatem et al. (2022a). An overview of all model procedures and comparisPlotting multiple fault representations: Applications for National Seismic Hazard Model 2023 update (NSHM-faultmaps)
The National Seismic Hazard Model (NSHM) utilizes a fault sections database (FSD) throughout the model workflow. Working towards a 2023 NSHM release, the NSHM23 FSD encompasses a major update with the addition of new fault sections, as well as the revision of existing fault sections from prior FSD (2014). The additions and revisions were largely based on the U.S. Geological Survey's Quaternary FauCompilation of geologic slip rate constraints used in 1996-2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022)
A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were made in geologic slip rate data used. The geologic slip rates are collated from existing NSHM reEarthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022)
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ('NSHM23_FSD_v2'), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ('NSHM23_EQGeoDB_v2'), which contains fault slip-rate constraints at points. These databases were prepared in anticipation of updates to the NSummary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between tEarthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ("NSHM2023_FaultSections_v1"), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ("NSHM2023_EQGeoDB_v1"), which contains fault slip-rate constraints at points. These databasesCompilation of geologic slip rate constraints used in 1996 - 2014 U.S. National Seismic Hazard Maps
A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Yet, no single database exists to house all geologic slip rate data used in these calculations. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were - Maps
Surface Rupture Map of the 2020 M 6.5 Monte Cristo Range earthquake, Esmeralda and Mineral counties, Nevada
The 15 May 2020, M6.5 Monte Cristo Range earthquake was the largest earthquake in Nevada in over 66 years and occurred in a sparsely populated area of western Nevada about 74 km southeast of the town of Hawthorne. The earthquake produced surface rupture distributed across a 28-km-long zone along the eastward projection of the Candelaria fault in the Mina deflection of the central Walker Lane. Post - Publications
Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023
As part of the U.S. National Seismic Hazard Model (NSHM) update planned for 2023, two databases were prepared to more completely represent Quaternary-active faulting across the western United States: the NSHM23 fault sections database (FSD) and earthquake geology database (EQGeoDB). In prior iterations of NSHM, fault sections were included only if a field-measurement-derived slip rate was estimateHow similar was the 1983 Mw 6.9 Borah Peak earthquake rupture to its surface-faulting predecessors along the northern Lost River fault zone (Idaho, USA)?
We excavated trenches at two paleoseismic sites bounding a trans-basin bedrock ridge (the Willow Creek Hills) along the northern Lost River fault zone to explore the uniqueness of the 1983 Mw 6.9 Borah Peak earthquake compared to its prehistoric predecessors. At the Sheep Creek site on the southernmost Warm Springs section, two earthquakes occurred at 9.8−14.0 ka (95% confidence) and 6.5−7.1 ka; eSTEPS: Slip time earthquake path simulations applied to the San Andreas and Toe Jam Hill Faults to redefine geologic slip rate uncertainty
Geologic slip rates are a time-averaged measurement of fault displacement calculated over hundreds to million-year time scales and are a primary input for probabilistic seismic hazard analyses, which forecast expected ground shaking in future earthquakes. Despite their utility for seismic hazard calculations, longer-term geologic slip rates represent a time-averaged measure of the tempo of strainField response and surface rupture characteristics of the 2020 M6.5 Monte Cristo Range earthquake, central Walker Lane, Nevada
The M 6.5 Monte Cristo Range earthquake that occurred in the central Walker Lane on 15 May 2020 was the largest earthquake in Nevada in 66 yr and resulted in a multidisciplinary scientific field response. The earthquake was the result of left‐lateral slip along largely unmapped parts of the Candelaria fault, one of a series of east–northeast‐striking faults that comprise the Mina deflection, a majDocumentation of Surface Fault Rupture and Ground‐Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence
The MwMw 6.4 and MwMw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefullySurface displacement distributions for the July 2019 Ridgecrest, California earthquake ruptures
Surface rupture in the 2019 Ridgecrest, California, earthquake sequence occurred along two orthogonal cross faults and includes dominantly left‐lateral and northeast‐striking rupture in the Mw 6.4 foreshock and dominantly right‐lateral and northwest‐striking rupture in the Mw 7.1 mainshock. We present >650 field‐based, surface‐displacement observations for these ruptures and synthesize our resultsNon-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
- Software
STEPS: Slip Time Earthquake Path Simulations applied to the San Andreas and Toe Jam Hill faults to redefine geologic slip rate uncertainty (Matlab code)
Geologic slip rates are a time-averaged measurement of fault displacement calculated over 100s- to 1,000,000-year time scales and are a primary input for probabilistic seismic hazard analyses (PSHA), which forecast expected ground shaking in future earthquakes. Despite their utility for seismic hazard calculations, longer-term geologic slip rates represent a time-averaged measure of the tempo of s