Amy Foxgrover
Geographer at the USGS Pacific Coastal and Marine Science Center
Science and Products
Filter Total Items: 15
Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Coastal Storm Modeling System (CoSMoS) for Central California, v3.1
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and...
California shorelines and shoreline change data, 1998-2016 California shorelines and shoreline change data, 1998-2016
This data release contains mean high water (MHW) shorelines along the coast of California for the years 1998/2002, 2015, and 2016, extracted from Light Detection and Ranging (LiDAR) digital elevation models using ArcGIS. The Digital Shoreline Analysis System (DSAS) was used to calculate net shoreline movement (NSM) between the pre-El Nino (2015) and post-El Nino (2016) shorelines, as a...
Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level-rise scenarios, as well as long-term shoreline change and cliff retreat. Resulting projections for future climate scenarios (sea-level rise and storms) provide emergency...
Filter Total Items: 21
Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change-driven coastal hazards and socio-economic impacts Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change-driven coastal hazards and socio-economic impacts
This paper is the second of two that describes the Coastal Storm Modeling System (CoSMoS) approach for quantifying physical hazards and socio-economic hazard exposure in coastal zones affected by sea-level rise and changing coastal storms. The modelling approach, presented in Part 1, downscales atmospheric global-scale projections to local scale coastal flood impacts by deterministically...
Authors
Li H. Erikson, Patrick L. Barnard, Andrea C. O'Neill, Nathan J. Wood, Jeanne M. Jones, Juliette Finzi Hart, Sean Vitousek, Patrick W. Limber, Maya Hayden, Michael Fitzgibbon, Jessica Lovering, Amy C. Foxgrover
Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model
Due to the effects of climate change over the course of the next century, the combination of rising sea levels, severe storms, and coastal change will threaten the sustainability of coastal communities, development, and ecosystems as we know them today. To clearly identify coastal vulnerabilities and develop appropriate adaptation strategies due to projected increased levels of coastal...
Authors
Andrea C. O'Neill, Li H. Erikson, Patrick L. Barnard, Patrick W. Limber, Sean Vitousek, Jonathan A. Warrick, Amy C. Foxgrover, Jessica Lovering
Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay
Estuarine tidal mudflats form unique habitats and maintain valuable ecosystems. Historic measurements of a mudflat in San Fancsico Bay over the past 150 years suggest the development of a rather stable mudflat profile. This raises questions on its origin and governing processes as well as on the mudflats’ fate under scenarios of sea level rise and decreasing sediment supply. We developed...
Authors
Mick Van der Wegen, Bruce E. Jaffe, Amy C. Foxgrover, Dano Roelvink
Automatic delineation of seacliff limits using lidar-derived high-resolution DEMs in southern California Automatic delineation of seacliff limits using lidar-derived high-resolution DEMs in southern California
Seacliff erosion is a serious hazard with implications for coastal management and is often estimated using successive hand-digitized cliff tops or bases (toe) to assess cliff retreat. Even if efforts are made to standardize manual digitizing and eliminate subjectivity, the delineation of cliffs is time-consuming and depends on the analyst's interpretation. An automatic procedure is...
Authors
Monica Palaseanu-Lovejoy, Jeffrey J. Danielson, Cindy A. Thatcher, Amy C. Foxgrover, Patrick L. Barnard, John Brock, Adam Young
Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e...
Authors
Patrick L. Barnard, Maarten van Ormondt, Li H. Erikson, Jodi Eshleman, Cheryl J. Hapke, Peter Ruggiero, Peter Adams, Amy C. Foxgrover
Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System
Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply...
Authors
Patrick L. Barnard, Amy C. Foxgrover, Edwin P.L. Elias, Li H. Erikson, James R. Hein, Mary McGann, Kira Mizell, Robert J. Rosenbauer, Peter W. Swarzenski, Renee K. Takesue, Florence L. Wong, Don Woodrow
Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California
In 2010, the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from...
Authors
Amy C. Foxgrover, David P. Finlayson, Bruce E. Jaffe, Theresa A. Fregoso
Sediment deposition and erosion in south San Francisco Bay, California from 1956 to 2005 Sediment deposition and erosion in south San Francisco Bay, California from 1956 to 2005
Sediment deposition and erosion in South San Francisco Bay from 1956 to 2005 was studied by comparing bathymetric surveys made in 1956, 1983, and 2005. From 1956 to 1983, the region was erosional. In contrast, from 1983 to 2005, the region was depositional. Analysis of subregions defined by depth, morphology and location revealed similarities in behavior during both the erosional and...
Authors
Bruce Jaffe, Amy C. Foxgrover
A history of intertidal flat area in south San Francisco Bay, California: 1858 to 2005 A history of intertidal flat area in south San Francisco Bay, California: 1858 to 2005
A key question in salt pond restoration in South San Francisco Bay is whether sediment sinks created by opening ponds will result in the loss of intertidal flats. Analyses of a series of bathymetric surveys of South San Francisco Bay made from 1858 to 2005 reveal changes in intertidal flat area in both space and time that can be used to better understand the pre-restoration system. This...
Authors
Bruce Jaffe, Amy C. Foxgrover
Science and Products
Filter Total Items: 15
Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Coastal Storm Modeling System (CoSMoS) for Central California, v3.1
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and...
California shorelines and shoreline change data, 1998-2016 California shorelines and shoreline change data, 1998-2016
This data release contains mean high water (MHW) shorelines along the coast of California for the years 1998/2002, 2015, and 2016, extracted from Light Detection and Ranging (LiDAR) digital elevation models using ArcGIS. The Digital Shoreline Analysis System (DSAS) was used to calculate net shoreline movement (NSM) between the pre-El Nino (2015) and post-El Nino (2016) shorelines, as a...
Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level-rise scenarios, as well as long-term shoreline change and cliff retreat. Resulting projections for future climate scenarios (sea-level rise and storms) provide emergency...
Filter Total Items: 21
Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change-driven coastal hazards and socio-economic impacts Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change-driven coastal hazards and socio-economic impacts
This paper is the second of two that describes the Coastal Storm Modeling System (CoSMoS) approach for quantifying physical hazards and socio-economic hazard exposure in coastal zones affected by sea-level rise and changing coastal storms. The modelling approach, presented in Part 1, downscales atmospheric global-scale projections to local scale coastal flood impacts by deterministically...
Authors
Li H. Erikson, Patrick L. Barnard, Andrea C. O'Neill, Nathan J. Wood, Jeanne M. Jones, Juliette Finzi Hart, Sean Vitousek, Patrick W. Limber, Maya Hayden, Michael Fitzgibbon, Jessica Lovering, Amy C. Foxgrover
Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model
Due to the effects of climate change over the course of the next century, the combination of rising sea levels, severe storms, and coastal change will threaten the sustainability of coastal communities, development, and ecosystems as we know them today. To clearly identify coastal vulnerabilities and develop appropriate adaptation strategies due to projected increased levels of coastal...
Authors
Andrea C. O'Neill, Li H. Erikson, Patrick L. Barnard, Patrick W. Limber, Sean Vitousek, Jonathan A. Warrick, Amy C. Foxgrover, Jessica Lovering
Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay
Estuarine tidal mudflats form unique habitats and maintain valuable ecosystems. Historic measurements of a mudflat in San Fancsico Bay over the past 150 years suggest the development of a rather stable mudflat profile. This raises questions on its origin and governing processes as well as on the mudflats’ fate under scenarios of sea level rise and decreasing sediment supply. We developed...
Authors
Mick Van der Wegen, Bruce E. Jaffe, Amy C. Foxgrover, Dano Roelvink
Automatic delineation of seacliff limits using lidar-derived high-resolution DEMs in southern California Automatic delineation of seacliff limits using lidar-derived high-resolution DEMs in southern California
Seacliff erosion is a serious hazard with implications for coastal management and is often estimated using successive hand-digitized cliff tops or bases (toe) to assess cliff retreat. Even if efforts are made to standardize manual digitizing and eliminate subjectivity, the delineation of cliffs is time-consuming and depends on the analyst's interpretation. An automatic procedure is...
Authors
Monica Palaseanu-Lovejoy, Jeffrey J. Danielson, Cindy A. Thatcher, Amy C. Foxgrover, Patrick L. Barnard, John Brock, Adam Young
Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e...
Authors
Patrick L. Barnard, Maarten van Ormondt, Li H. Erikson, Jodi Eshleman, Cheryl J. Hapke, Peter Ruggiero, Peter Adams, Amy C. Foxgrover
Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System
Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply...
Authors
Patrick L. Barnard, Amy C. Foxgrover, Edwin P.L. Elias, Li H. Erikson, James R. Hein, Mary McGann, Kira Mizell, Robert J. Rosenbauer, Peter W. Swarzenski, Renee K. Takesue, Florence L. Wong, Don Woodrow
Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California
In 2010, the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from...
Authors
Amy C. Foxgrover, David P. Finlayson, Bruce E. Jaffe, Theresa A. Fregoso
Sediment deposition and erosion in south San Francisco Bay, California from 1956 to 2005 Sediment deposition and erosion in south San Francisco Bay, California from 1956 to 2005
Sediment deposition and erosion in South San Francisco Bay from 1956 to 2005 was studied by comparing bathymetric surveys made in 1956, 1983, and 2005. From 1956 to 1983, the region was erosional. In contrast, from 1983 to 2005, the region was depositional. Analysis of subregions defined by depth, morphology and location revealed similarities in behavior during both the erosional and...
Authors
Bruce Jaffe, Amy C. Foxgrover
A history of intertidal flat area in south San Francisco Bay, California: 1858 to 2005 A history of intertidal flat area in south San Francisco Bay, California: 1858 to 2005
A key question in salt pond restoration in South San Francisco Bay is whether sediment sinks created by opening ponds will result in the loss of intertidal flats. Analyses of a series of bathymetric surveys of South San Francisco Bay made from 1858 to 2005 reveal changes in intertidal flat area in both space and time that can be used to better understand the pre-restoration system. This...
Authors
Bruce Jaffe, Amy C. Foxgrover