Jason M Altekruse
Jason Altekruse is a Geophysicist with the Earthquake Hazards Program.
Science and Products
Datasets for the 2025 USGS National Seismic Hazard Model for Puerto Rico and the U.S. Virgin Islands Datasets for the 2025 USGS National Seismic Hazard Model for Puerto Rico and the U.S. Virgin Islands
This data release contains datasets associated with the 2025 U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) for Puerto Rico and the U.S. Virgin Islands (PRVI). The 2025 PRVI NSHM (Shumway and others, 2025), which is an update of the original 2003 PRVI NSHM (Mueller and others, 2003, 2010). Datasets include model inputs like seismicity catalogs, smoothed seismicity...
Data Release for the The 2023 Alaska National Seismic Hazard Model Data Release for the The 2023 Alaska National Seismic Hazard Model
The U.S. National Seismic Hazard Model (NSHM) for the state of Alaska was updated in 2023 as part of the 50-state NSHM update. The new model incorporates more than 15 years of additional science since the release of the previous model in 2007 and has been reviewed by a six-member review panel and a supplementary eight-member team of ground motion model developers. This time-independent
Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as...
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
Data Release for the 2021 Update of the U.S. National Seismic Hazard Model for Hawaii Data Release for the 2021 Update of the U.S. National Seismic Hazard Model for Hawaii
The 2021 update of the U.S. National Seismic Hazard Model for Hawaii succeeds the twenty-year-old former model by incorporating new data and modeling techniques to improve the ground shaking forecasts. Output from the model includes probabilistic seismic hazard curves calculated for a 0.02° x 0.02° grid of latitude/longitude locations across Hawaii. The new model provides an expanded...
Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States
Peak ground velocity (PGV) gridded probabilistic seismic hazard data for the updated 2018 National Seismic Hazard Model (NSHM) for the Conterminous United States (CONUS). PGV hazard curves and ground motions have been calculated on a 0.05 by 0.05 degree grid using the NSHM CONUS 2018 earthquake source model. PGV support has been incorporated into the NSHM using a newly developed PGV...
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective
We articulate a scientific vision and roadmap for the development of improved Earthquake Rupture Forecast models, which are one of the two main modeling components used in modern seismic hazard and risk analysis. One primary future objective is to provide fully time-dependent models that include both elastic rebound and spatiotemporal clustering nationwide, which is particularly...
Authors
Edward H. Field, Alexandra Elise Hatem, Bruce E. Shaw, Morgan T. Page, P. Martin Mai, Kevin Ross Milner, Andrea L. Llenos, Andrew J. Michael, Frederick Pollitz, Jessica Ann Thompson Jobe, Thomas E. Parsons, Olaf Zielke, David R. Shelly, Alice-Agnes Gabriel, Devin McPhillips, Richard W. Briggs, Elizabeth S. Cochran, Nico Luco, Mark D. Petersen, Peter M. Powers, Justin Rubinstein, Allison Shumway, Nicholas van der Elst, Yuehua Zeng, Christopher DuRoss, Jason M. Altekruse
The 2023 Alaska National Seismic Hazard Model The 2023 Alaska National Seismic Hazard Model
US Geological Survey (USGS) National Seismic Hazard Models (NSHMs) are used extensively for seismic design regulations in the United States and earthquake scenario development, as well as risk assessment and mitigation for both buildings and infrastructure. This 2023 update of the long-term, time-independent Alaska NSHM includes substantial changes to both the earthquake rupture forecast...
Authors
Peter M. Powers, Jason M. Altekruse, Andrea L. Llenos, Andrew J. Michael, Kirstie Lafon Haynie, Peter J. Haeussler, Adrian Bender, Sanaz Rezaeian, Morgan P. Moschetti, James Andrew Smith, Richard W. Briggs, Robert C. Witter, Charles Mueller, Yuehua Zeng, Demi Leafar Girot, Julie A. Herrick, Allison Shumway, Mark D. Petersen
The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models
The US Geological Survey National Seismic Hazard Models (NSHMs) are used to calculate earthquake ground-shaking intensities for design and rehabilitation of structures in the United States. The most recent 2014 and 2018 versions of the NSHM for the conterminous United States included major updates to ground-motion models (GMMs) for active and stable crustal tectonic settings; however...
Authors
Sanaz Rezaeian, Peter M. Powers, Jason M. Altekruse, Sean Kamran Ahdi, Mark D. Petersen, Allison Shumway, Arthur D. Frankel, Erin A. Wirth, James Andrew Smith, Morgan P. Moschetti, Kyle Withers, Julie A. Herrick
Forecasting the long-term spatial distribution of earthquakes for the 2023 US National Seismic Hazard Model using gridded seismicity Forecasting the long-term spatial distribution of earthquakes for the 2023 US National Seismic Hazard Model using gridded seismicity
Probabilistic seismic hazard analyses such as the U.S. National Seismic Hazard Model (NSHM) typically rely on declustering and spatially smoothing an earthquake catalog to estimate a long‐term time‐independent (background) seismicity rate to forecast future seismicity. In support of the U.S. Geological Survey’s (USGS) 2023 update to the NSHM, we update the methods used to develop this...
Authors
Andrea L. Llenos, Andrew J. Michael, Allison Shumway, Justin Rubinstein, Kirstie Lafon Haynie, Morgan P. Moschetti, Jason M. Altekruse, Kevin R. Milner
The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States
We update the ground-motion characterization for the 2023 National Seismic Hazard Model (NSHM) for the conterminous United States. The update includes the use of new ground-motion models (GMMs) in the Cascadia subduction zone; an adjustment to the central and eastern United States (CEUS) GMMs to reduce misfits with observed data; an updated boundary for the application of GMMs for...
Authors
Morgan P. Moschetti, Brad T. Aagaard, Sean Kamran Ahdi, Jason M. Altekruse, Oliver S. Boyd, Arthur D. Frankel, Julie A. Herrick, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Allison Shumway, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Kyle Withers
Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model
As part of the U.S. Geological Survey’s 2023 50‐State National Seismic Hazard Model (NSHM), we make modest revisions and additions to the central and eastern U.S. (CEUS) fault‐based seismic source model that result in locally substantial hazard changes. The CEUS fault‐based source model was last updated as part of the 2014 NSHM and considered new information from the Seismic Source
Authors
Allison Shumway, Mark D. Petersen, Gabriel Toro, Peter M. Powers, Jason M. Altekruse, Julie A. Herrick, Kenneth S. Rukstales, Jessica Ann Thompson Jobe, Alexandra Elise Hatem, Demi Leafar Girot
The 2023 US 50-State National Seismic Hazard Model: Overview and implications The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Edward H. Field, Morgan P. Moschetti, Kishor S. Jaiswal, Kevin R. Milner, Sanaz Rezaeian, Arthur D. Frankel, Andrea L. Llenos, Andrew J. Michael, Jason M. Altekruse, Sean Kamran Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert E. Chase, Leah M. Salditch, Nico Luco, Kenneth S. Rukstales, Julie A. Herrick, Demi Leafar Girot, Brad T. Aagaard, Adrian Bender, Michael L. Blanpied, Richard W. Briggs, Oliver S. Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Elise Hatem, Kirstie Lafon Haynie, Elizabeth H. Hearn, Kaj M. Johnson, Zachary Alan Kortum, N. Simon Kwong, Andrew James Makdisi, Henry Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan T. Page, Frederick Pollitz, Justin Rubinstein, Bruce E. Shaw, Zheng-Kang Shen, Brian Shiro, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Jessica Ann Thompson Jobe, Erin A. Wirth, Robert C. Witter
2021 U.S. National Seismic Hazard Model for the State of Hawaii 2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Morgan P. Moschetti, Andrea L. Llenos, Andrew J. Michael, Charles Mueller, Arthur D. Frankel, Sanaz Rezaeian, Kenneth S. Rukstales, Daniel E. McNamara, P. Okubo, Yuehua Zeng, Kishor S. Jaiswal, Sean Kamran Ahdi, Jason M. Altekruse, Brian Shiro
The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed
The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles S Mueller, Morgan P. Moschetti, Arthur D. Frankel, Sanaz Rezaeian, Daniel McNamara, Nico Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor S. Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
The 2018 update of the US National Seismic Hazard Model: Additional period and site class data The 2018 update of the US National Seismic Hazard Model: Additional period and site class data
As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic...
Authors
Allison Shumway, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Kenneth S. Rukstales, Brandon Clayton
The 2018 update of the US National Seismic Hazard Model: Overview of model and implications The 2018 update of the US National Seismic Hazard Model: Overview of model and implications
During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles Mueller, Morgan P. Moschetti, Arthur D. Frankel, Sanaz Rezaeian, Daniel E. McNamara, Nico Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor S. Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
nshm-alaska-v2 nshm-alaska-v2
Software release of 2023 Alaska NSHM input files for use with nshmp-haz.
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
Science and Products
Datasets for the 2025 USGS National Seismic Hazard Model for Puerto Rico and the U.S. Virgin Islands Datasets for the 2025 USGS National Seismic Hazard Model for Puerto Rico and the U.S. Virgin Islands
This data release contains datasets associated with the 2025 U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) for Puerto Rico and the U.S. Virgin Islands (PRVI). The 2025 PRVI NSHM (Shumway and others, 2025), which is an update of the original 2003 PRVI NSHM (Mueller and others, 2003, 2010). Datasets include model inputs like seismicity catalogs, smoothed seismicity...
Data Release for the The 2023 Alaska National Seismic Hazard Model Data Release for the The 2023 Alaska National Seismic Hazard Model
The U.S. National Seismic Hazard Model (NSHM) for the state of Alaska was updated in 2023 as part of the 50-state NSHM update. The new model incorporates more than 15 years of additional science since the release of the previous model in 2007 and has been reviewed by a six-member review panel and a supplementary eight-member team of ground motion model developers. This time-independent
Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as...
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
Data Release for the 2021 Update of the U.S. National Seismic Hazard Model for Hawaii Data Release for the 2021 Update of the U.S. National Seismic Hazard Model for Hawaii
The 2021 update of the U.S. National Seismic Hazard Model for Hawaii succeeds the twenty-year-old former model by incorporating new data and modeling techniques to improve the ground shaking forecasts. Output from the model includes probabilistic seismic hazard curves calculated for a 0.02° x 0.02° grid of latitude/longitude locations across Hawaii. The new model provides an expanded...
Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States
Peak ground velocity (PGV) gridded probabilistic seismic hazard data for the updated 2018 National Seismic Hazard Model (NSHM) for the Conterminous United States (CONUS). PGV hazard curves and ground motions have been calculated on a 0.05 by 0.05 degree grid using the NSHM CONUS 2018 earthquake source model. PGV support has been incorporated into the NSHM using a newly developed PGV...
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models
A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective A scientific vision and roadmap for earthquake rupture forecast developments, a USGS perspective
We articulate a scientific vision and roadmap for the development of improved Earthquake Rupture Forecast models, which are one of the two main modeling components used in modern seismic hazard and risk analysis. One primary future objective is to provide fully time-dependent models that include both elastic rebound and spatiotemporal clustering nationwide, which is particularly...
Authors
Edward H. Field, Alexandra Elise Hatem, Bruce E. Shaw, Morgan T. Page, P. Martin Mai, Kevin Ross Milner, Andrea L. Llenos, Andrew J. Michael, Frederick Pollitz, Jessica Ann Thompson Jobe, Thomas E. Parsons, Olaf Zielke, David R. Shelly, Alice-Agnes Gabriel, Devin McPhillips, Richard W. Briggs, Elizabeth S. Cochran, Nico Luco, Mark D. Petersen, Peter M. Powers, Justin Rubinstein, Allison Shumway, Nicholas van der Elst, Yuehua Zeng, Christopher DuRoss, Jason M. Altekruse
The 2023 Alaska National Seismic Hazard Model The 2023 Alaska National Seismic Hazard Model
US Geological Survey (USGS) National Seismic Hazard Models (NSHMs) are used extensively for seismic design regulations in the United States and earthquake scenario development, as well as risk assessment and mitigation for both buildings and infrastructure. This 2023 update of the long-term, time-independent Alaska NSHM includes substantial changes to both the earthquake rupture forecast...
Authors
Peter M. Powers, Jason M. Altekruse, Andrea L. Llenos, Andrew J. Michael, Kirstie Lafon Haynie, Peter J. Haeussler, Adrian Bender, Sanaz Rezaeian, Morgan P. Moschetti, James Andrew Smith, Richard W. Briggs, Robert C. Witter, Charles Mueller, Yuehua Zeng, Demi Leafar Girot, Julie A. Herrick, Allison Shumway, Mark D. Petersen
The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models The 2023 U.S. National Seismic Hazard Model: Subduction ground motion models
The US Geological Survey National Seismic Hazard Models (NSHMs) are used to calculate earthquake ground-shaking intensities for design and rehabilitation of structures in the United States. The most recent 2014 and 2018 versions of the NSHM for the conterminous United States included major updates to ground-motion models (GMMs) for active and stable crustal tectonic settings; however...
Authors
Sanaz Rezaeian, Peter M. Powers, Jason M. Altekruse, Sean Kamran Ahdi, Mark D. Petersen, Allison Shumway, Arthur D. Frankel, Erin A. Wirth, James Andrew Smith, Morgan P. Moschetti, Kyle Withers, Julie A. Herrick
Forecasting the long-term spatial distribution of earthquakes for the 2023 US National Seismic Hazard Model using gridded seismicity Forecasting the long-term spatial distribution of earthquakes for the 2023 US National Seismic Hazard Model using gridded seismicity
Probabilistic seismic hazard analyses such as the U.S. National Seismic Hazard Model (NSHM) typically rely on declustering and spatially smoothing an earthquake catalog to estimate a long‐term time‐independent (background) seismicity rate to forecast future seismicity. In support of the U.S. Geological Survey’s (USGS) 2023 update to the NSHM, we update the methods used to develop this...
Authors
Andrea L. Llenos, Andrew J. Michael, Allison Shumway, Justin Rubinstein, Kirstie Lafon Haynie, Morgan P. Moschetti, Jason M. Altekruse, Kevin R. Milner
The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States
We update the ground-motion characterization for the 2023 National Seismic Hazard Model (NSHM) for the conterminous United States. The update includes the use of new ground-motion models (GMMs) in the Cascadia subduction zone; an adjustment to the central and eastern United States (CEUS) GMMs to reduce misfits with observed data; an updated boundary for the application of GMMs for...
Authors
Morgan P. Moschetti, Brad T. Aagaard, Sean Kamran Ahdi, Jason M. Altekruse, Oliver S. Boyd, Arthur D. Frankel, Julie A. Herrick, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Allison Shumway, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Kyle Withers
Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model Earthquake rupture forecast model construction for the 2023 U.S. 50‐State National Seismic Hazard Model Update: Central and eastern U.S. fault‐based source model
As part of the U.S. Geological Survey’s 2023 50‐State National Seismic Hazard Model (NSHM), we make modest revisions and additions to the central and eastern U.S. (CEUS) fault‐based seismic source model that result in locally substantial hazard changes. The CEUS fault‐based source model was last updated as part of the 2014 NSHM and considered new information from the Seismic Source
Authors
Allison Shumway, Mark D. Petersen, Gabriel Toro, Peter M. Powers, Jason M. Altekruse, Julie A. Herrick, Kenneth S. Rukstales, Jessica Ann Thompson Jobe, Alexandra Elise Hatem, Demi Leafar Girot
The 2023 US 50-State National Seismic Hazard Model: Overview and implications The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Edward H. Field, Morgan P. Moschetti, Kishor S. Jaiswal, Kevin R. Milner, Sanaz Rezaeian, Arthur D. Frankel, Andrea L. Llenos, Andrew J. Michael, Jason M. Altekruse, Sean Kamran Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert E. Chase, Leah M. Salditch, Nico Luco, Kenneth S. Rukstales, Julie A. Herrick, Demi Leafar Girot, Brad T. Aagaard, Adrian Bender, Michael L. Blanpied, Richard W. Briggs, Oliver S. Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Elise Hatem, Kirstie Lafon Haynie, Elizabeth H. Hearn, Kaj M. Johnson, Zachary Alan Kortum, N. Simon Kwong, Andrew James Makdisi, Henry Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan T. Page, Frederick Pollitz, Justin Rubinstein, Bruce E. Shaw, Zheng-Kang Shen, Brian Shiro, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Jessica Ann Thompson Jobe, Erin A. Wirth, Robert C. Witter
2021 U.S. National Seismic Hazard Model for the State of Hawaii 2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Morgan P. Moschetti, Andrea L. Llenos, Andrew J. Michael, Charles Mueller, Arthur D. Frankel, Sanaz Rezaeian, Kenneth S. Rukstales, Daniel E. McNamara, P. Okubo, Yuehua Zeng, Kishor S. Jaiswal, Sean Kamran Ahdi, Jason M. Altekruse, Brian Shiro
The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed
The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles S Mueller, Morgan P. Moschetti, Arthur D. Frankel, Sanaz Rezaeian, Daniel McNamara, Nico Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor S. Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
The 2018 update of the US National Seismic Hazard Model: Additional period and site class data The 2018 update of the US National Seismic Hazard Model: Additional period and site class data
As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic...
Authors
Allison Shumway, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Kenneth S. Rukstales, Brandon Clayton
The 2018 update of the US National Seismic Hazard Model: Overview of model and implications The 2018 update of the US National Seismic Hazard Model: Overview of model and implications
During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles Mueller, Morgan P. Moschetti, Arthur D. Frankel, Sanaz Rezaeian, Daniel E. McNamara, Nico Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor S. Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
nshm-alaska-v2 nshm-alaska-v2
Software release of 2023 Alaska NSHM input files for use with nshmp-haz.
nshm-hawaii-v2 nshm-hawaii-v2
National Seismic Hazard Model (NSHM) for the State of Hawaii. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz.
nshm-conus-v5 nshm-conus-v5
National Seismic Hazard Model (NSHM) for the conterminous U.S. This model is intended for use with U.S. Geological Survey (USGS) hazard software nshmp-haz. This model was last updated in 2018.
nshmp-haz-v2 nshmp-haz-v2
U.S. Geological Survey (USGS) National Seismic Hazard Model Project (NSHMP) codes for performing probabilistic seismic hazard (PSHA) and related analyses. These codes are intended for use with seismic hazard models developed by the NSHMP for the U.S. and its territories. This project includes a variety of command line applications and web service classes and relies on the nshmp-lib...
nshmp-lib nshmp-lib
nshmp-lib is a USGS developed Java library that supports probabilistic seismic hazard (PSHA) and related analyses. This project includes all the code required to load, process and query USGS National Seismic Hazard Models (NSHMs). nshmp-lib is used by command line applications and web services found in the nshmp-haz project. See that project for running PSHA calculations.
nshm-fault-sections nshm-fault-sections
A repository of all geologic fault section data included in USGS National Seismic Hazard Models