Lauren Edgar is a Research Geologist at the U.S. Geological Survey Astrogeology Science Center.
Science and Products
Surface - Atmosphere interaction
The USGS Astrogeology Science Center conducts research on the interaction between planetary surfaces and the overlying atmospheres. In particular, the transfer of momentum (from wind), vapor (evaporation/sublimation), liquid (rainfall, percolation, infiltration) and solids (snow) occurs between surfaces and atmospheres.
Filter Total Items: 29
Geology and stratigraphic correlation of the Murray and Carolyn Shoemaker formations across the Glen Torridon region, Gale crater, Mars
The Glen Torridon (GT) region within Gale crater, Mars, occurs in contact with the southern side of Vera Rubin ridge (VRR), a well-defined geomorphic feature that is comparatively resistant to erosion. Prior to detailed ground-based investigation of GT, its geologic relationship with VRR was unknown. Distinct lithologic subunits within the Jura member (Murray formation), which forms the upper part
Sedimentological and geochemical perspectives on a marginal lake environment recorded in the Hartmann’s Valley and Karasburg members of the Murray formation, Gale crater, Mars
This study utilizes instruments from the Curiosity rover payload to develop an integrated paleoenvironmental and compositional reconstruction for the 65-m thick interval of stratigraphy comprising the Hartmann's Valley and Karasburg members of the Murray formation, Gale crater, Mars. The stratigraphy consists of cross-stratified sandstone (Facies 1), planar-laminated sandstone (Facies 2), and plan
Thermophysical and compositional properties of paleobedforms on Mars
Bedforms on Earth and Mars are often preserved in the rock record in the form of sedimentary rock with distinct cross-bedding. On rare occasions, the full-surface geometry of a bedform can be preserved through burial and lithification. These features, known as paleobedforms, are found in a variety of geographic locations on Mars. Evidence in the morphology of paleobedforms, such as the retention o
Evidence for fluctuating wind in shaping an ancient Martian dune field: The Stimson formation at the Greenheugh pediment, Gale crater
Temporal fluctuations of wind strength and direction can influence aeolian bedform morphology and orientation, which can be encoded into the architecture of aeolian deposits. These strata represent a direct record of atmospheric processes and can be used to understand ancient Martian atmospheric processes as well as those on Earth. The strata can: give insight to ancient atmospheric circulation, h
The Curiosity Rover’s exploration of Glen Torridon, Gale crater, Mars: An overview of the campaign and scientific results
The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for one martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition
Ancient winds, waves, and atmosphere in Gale Crater, Mars, inferred from sedimentary structures and wave modeling
Wave modeling and analysis of sedimentary structures were used to evaluate whether four examples of symmetrical, reversing, or straight-crested bedforms in Gale crater sandstones are preserved wave ripples; deposition by waves would demonstrate that the lake was not covered by ice at that time. Wave modeling indicates that regardless of atmospheric density, winds that exceeded the threshold of aeo
Workshop on terrestrial analogs for planetary exploration
Terrestrial analogs are an important part of the robotic and human exploration of the solar system. One of the main recommendations from a community survey conducted in 2019 was to hold a workshop to increase communication and share resources among scientists, engineers, data managers, educators, and students who are involved, or hope to be involved, in terrestrial analog studies.
A geologic field guide to S P Mountain and its lava flow, San Francisco Volcanic Field, Arizona
IntroductionWe created this guide to introduce the user to the San Francisco Volcanic Field as a terrestrial analog site for planetary volcanic processes. For decades, the San Francisco Volcanic Field has been used to teach scientists to recognize the products of common types of volcanic eruptions and associated volcanic features. The volcanic processes and products observed in this volcanic field
A review of the phyllosilicates in Gale Crater as detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instr
Solar-system-wide significance of Mars polar science
1. The North Polar Layered Deposits contain thousands of ice layers that record accumulation and climate history for at least several million years, making the most accessible and most complete climate record aside from the Earth’s – and the only one to record the impact of large obliquity shifts.
2. Mars Polar Science is a diverse and integrated system spanning much of the planet, above and below
Alternating wet and dry depositional environments recorded in the stratigraphy of Mt Sharp at Gale Crater, Mars
The Curiosity rover is exploring Hesperian-aged stratigraphy in Gale crater, Mars, where a transition from clay-bearing units to a layered sulfate-bearing unit has been interpreted to represent a major environmental transition of unknown character. We present the first description of key facies in the sulfate-bearing unit, recently observed in the distance by the rover, and propose a model for cha
Diagenesis revealed by fine-scale features at Vera Rubin ridge, Gale crater, Mars
Fine-scale (submillimeter to centimeter) depositional and diagenetic features encountered during the Curiosity rover's traverse in Gale crater provide a means to understand the geologic history of Vera Rubin ridge (VRR). VRR is a topographically high feature on the lower north slope of Aeolis Mons, a 5-km high stratified mound within Gale crater. We use high-spatial resolution images from the Mars
Science and Products
- Science
Surface - Atmosphere interaction
The USGS Astrogeology Science Center conducts research on the interaction between planetary surfaces and the overlying atmospheres. In particular, the transfer of momentum (from wind), vapor (evaporation/sublimation), liquid (rainfall, percolation, infiltration) and solids (snow) occurs between surfaces and atmospheres. - Publications
Filter Total Items: 29
Geology and stratigraphic correlation of the Murray and Carolyn Shoemaker formations across the Glen Torridon region, Gale crater, Mars
The Glen Torridon (GT) region within Gale crater, Mars, occurs in contact with the southern side of Vera Rubin ridge (VRR), a well-defined geomorphic feature that is comparatively resistant to erosion. Prior to detailed ground-based investigation of GT, its geologic relationship with VRR was unknown. Distinct lithologic subunits within the Jura member (Murray formation), which forms the upper partSedimentological and geochemical perspectives on a marginal lake environment recorded in the Hartmann’s Valley and Karasburg members of the Murray formation, Gale crater, Mars
This study utilizes instruments from the Curiosity rover payload to develop an integrated paleoenvironmental and compositional reconstruction for the 65-m thick interval of stratigraphy comprising the Hartmann's Valley and Karasburg members of the Murray formation, Gale crater, Mars. The stratigraphy consists of cross-stratified sandstone (Facies 1), planar-laminated sandstone (Facies 2), and planThermophysical and compositional properties of paleobedforms on Mars
Bedforms on Earth and Mars are often preserved in the rock record in the form of sedimentary rock with distinct cross-bedding. On rare occasions, the full-surface geometry of a bedform can be preserved through burial and lithification. These features, known as paleobedforms, are found in a variety of geographic locations on Mars. Evidence in the morphology of paleobedforms, such as the retention oEvidence for fluctuating wind in shaping an ancient Martian dune field: The Stimson formation at the Greenheugh pediment, Gale crater
Temporal fluctuations of wind strength and direction can influence aeolian bedform morphology and orientation, which can be encoded into the architecture of aeolian deposits. These strata represent a direct record of atmospheric processes and can be used to understand ancient Martian atmospheric processes as well as those on Earth. The strata can: give insight to ancient atmospheric circulation, hThe Curiosity Rover’s exploration of Glen Torridon, Gale crater, Mars: An overview of the campaign and scientific results
The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for one martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transitionAncient winds, waves, and atmosphere in Gale Crater, Mars, inferred from sedimentary structures and wave modeling
Wave modeling and analysis of sedimentary structures were used to evaluate whether four examples of symmetrical, reversing, or straight-crested bedforms in Gale crater sandstones are preserved wave ripples; deposition by waves would demonstrate that the lake was not covered by ice at that time. Wave modeling indicates that regardless of atmospheric density, winds that exceeded the threshold of aeoWorkshop on terrestrial analogs for planetary exploration
Terrestrial analogs are an important part of the robotic and human exploration of the solar system. One of the main recommendations from a community survey conducted in 2019 was to hold a workshop to increase communication and share resources among scientists, engineers, data managers, educators, and students who are involved, or hope to be involved, in terrestrial analog studies.A geologic field guide to S P Mountain and its lava flow, San Francisco Volcanic Field, Arizona
IntroductionWe created this guide to introduce the user to the San Francisco Volcanic Field as a terrestrial analog site for planetary volcanic processes. For decades, the San Francisco Volcanic Field has been used to teach scientists to recognize the products of common types of volcanic eruptions and associated volcanic features. The volcanic processes and products observed in this volcanic fieldA review of the phyllosilicates in Gale Crater as detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instrSolar-system-wide significance of Mars polar science
1. The North Polar Layered Deposits contain thousands of ice layers that record accumulation and climate history for at least several million years, making the most accessible and most complete climate record aside from the Earth’s – and the only one to record the impact of large obliquity shifts. 2. Mars Polar Science is a diverse and integrated system spanning much of the planet, above and belowAlternating wet and dry depositional environments recorded in the stratigraphy of Mt Sharp at Gale Crater, Mars
The Curiosity rover is exploring Hesperian-aged stratigraphy in Gale crater, Mars, where a transition from clay-bearing units to a layered sulfate-bearing unit has been interpreted to represent a major environmental transition of unknown character. We present the first description of key facies in the sulfate-bearing unit, recently observed in the distance by the rover, and propose a model for chaDiagenesis revealed by fine-scale features at Vera Rubin ridge, Gale crater, Mars
Fine-scale (submillimeter to centimeter) depositional and diagenetic features encountered during the Curiosity rover's traverse in Gale crater provide a means to understand the geologic history of Vera Rubin ridge (VRR). VRR is a topographically high feature on the lower north slope of Aeolis Mons, a 5-km high stratified mound within Gale crater. We use high-spatial resolution images from the Mars