Dr. Marc Buursink is a Research Geologist with the USGS Geology, Energy & Minerals (GEM) Science Center in Reston, Virginia.
As part of the Geology, Energy & Minerals (GEM) Science Center, Marc works on geologic carbon dioxide sequestration research, underground energy storage problems, oil and gas resource assessments, and geophysical and geochemical data interpretation and synthesis. While a research earth scientist at Chevron Energy Technology Company, he worked on seismic modeling, basin analysis problems, and deep-water Gulf of Mexico and Atlantic Canada exploration. Previously at the USGS Hydrogeophysics Branch, he applied multiple geophysical methods to groundwater contamination investigations. In his spare time he serves as a volunteer EMT.
Professional Experience
2010 - present: Research Geologist, U.S. Geological Survey, Reston, Va.
2006 - 2010: Research Earth Scientist, Chevron Corp., Houston, Tex. and San Ramon, Calif.
2000 - 2007: Research Fellow, Boise State University, Boise, Idaho
1995 - 2001: Hydrologist, U.S. Geological Survey, Storrs, Conn.
1992 - 1995: Physical Science Technician, U.S. Geological Survey, Reston, Va.
Education and Certifications
Ph.D. Geophysics, Boise State University, 2006
M.S. Geosciences, University of Connecticut, 1998
B.A. Physics and Environmental Sciences with French minor, University of Virginia, 1993
Affiliations and Memberships*
Secretary, Potomac Geophysical Society (PGS)
Member, Geological Society of America (GSA) and Secretary, Energy Geology Division
Member, American Association of Petroleum Geologists (AAPG)
Member, American Geophysical Union (AGU)
Science and Products
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results
Assessment of undiscovered oil and gas resources in the Central North Slope of Alaska, 2020
Carbon dioxide enhanced oil recovery and residual oil zone studies at the U.S. Geological Survey
Geologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins
Assessment of undiscovered conventional oil and gas resources in the downdip Paleogene formations, U.S. Gulf Coast, 2017
Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources
National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands
Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas
Geologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska
Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast
Significance of carbon dioxide density estimates for basin-scale storage resource assessments
Geologic Energy Storage
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release
Science and Products
- Publications
Filter Total Items: 23
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary
IntroductionIn 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources that might be produced by using current carbon dioxide enhanced oil recovery (CO2-EOR) technologies in amenable conventional oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estNational assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied to amenable oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estimates of the mass of CO2 thatAssessment of undiscovered oil and gas resources in the Central North Slope of Alaska, 2020
Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 3.6 billion barrels of oil and 8.9 trillion cubic feet of natural gas (associated and nonassociated) in conventional accumulations in Mississippian through Paleogene strata in the central North Slope of Alaska.Carbon dioxide enhanced oil recovery and residual oil zone studies at the U.S. Geological Survey
The U.S. Geological Survey (USGS) is preparing a national resource assessment of the potential hydrocarbons recoverable after injection of carbon dioxide (CO2) into conventional oil reservoirs in the United States. The implementation of CO2-enhanced oil recovery (CO2-EOR) techniques can increase hydrocarbon production, and lead to incidental retention of CO2 in reservoir pore space allowing long-tGeologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins
This chapter presents information pertinent to the geologic carbon dioxide (CO2) sequestration potential within saline aquifers located in the Atlantic Coastal Plain and Eastern Mesozoic Rift Basins of the Eastern United States. The Atlantic Coastal Plain is underlain by a Jurassic to Quaternary succession of sedimentary strata that onlap westward onto strata of the Appalachian Piedmont physiograpAssessment of undiscovered conventional oil and gas resources in the downdip Paleogene formations, U.S. Gulf Coast, 2017
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable conventional resources of 100 million barrels of oil and 16.5 trillion cubic feet of gas in the downdip Paleogene formations in onshore lands and State waters of the U.S. Gulf Coast region.Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework dNational assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resGeologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas
The 2007 Energy Independence and Security Act directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and is intended to be used at regional to sub-basinal scales. The Williston BasGeologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska
This report presents fourteen storage assessment units (SAUs) from the Alaska North Slope and two SAUs from the Kandik Basin of Alaska. The Alaska North Slope is a broad, north-dipping coastal plain that is underlain by a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic during three major tectonic sequences: the Mississippian through Triassic EllesGeologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast
This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. AtSignificance of carbon dioxide density estimates for basin-scale storage resource assessments
The geologic carbon dioxide (CO2) storage resource size is a function of the density of CO2 in the subsurface. The pressure and temperature of the storage reservoir at depth affect the CO2 density. Therefore, knowing these subsurface conditions allows for improved resource estimates of potential geologic CO2 storage capacity. In 2012, the U.S. Geological Survey (USGS) completed an assessment of ge - Science
Geologic Energy Storage
The United States (U.S.) domestic energy supply increasingly relies on natural gas and renewable sources; however, their efficient use is limited by supply and demand constraints. For example, a) in summer, natural gas production may outpace home heating fuel demand and b) in daytime, wind and solar electricity production may outpace industrial power requirements. Storing rather than dumping... - Data
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied in amenable oil reservoirs underlying the onshore and State waters area of the conterminous United States. The assessment also includes estimates of the magnitude of CO2 s
*Disclaimer: Listing outside positions with professional scientific organizations on this Staff Profile are for informational purposes only and do not constitute an endorsement of those professional scientific organizations or their activities by the USGS, Department of the Interior, or U.S. Government