Mari Danz is a Hydrologist with the Upper Midwest Water Science Center.
Science and Products
Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)
Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss.
Select optical signals from water samples collected on the Menomonee River, Underwood Creek, and Jones Island Water Reclamation Facility from 2017-2019, and time-series optical sensor and one-hour mean streamflow data from the Menomonee River 2017-2018
5-day composite river water samples were collected from two sites: Menomonee River (U.S. Geological Survey station number 04087142) and Underwood Creek (U.S. Geological Survey station number 04087088) in Milwaukee, Wisconsin. 5-day composite wastewater (raw sewage) influent samples were also collected from the Jones Island Water Reclamation Facility (U.S. Geological Survey station number 430125087
Nutrient and sediment concentrations, loads, yields, and rainfall characteristics at USGS surface and subsurface-tile edge-of-field agricultural monitoring sites in Great Lakes States (ver. 2.0, September 2022)
This data release focuses on nutrient and sediment concentrations, loads, and yields at USGS surface and subsurface-tile edge-of-field (EOF) agricultural monitoring sites in Great Lakes States. Water quality and rainfall metrics are summarized by individual flow events to evaluate the contribution of EOF losses to headwater stream networks in agricultural landscapes. USGS EOF sites are components
Assessment of restorative maintenance practices on the infiltration capacity of permeable pavement
Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat runoff. Regular restorative maintenance practices can alleviate this issue and prolong the usefu
Stormwater-quality performance of line permeable pavement systems
Three permeable pavements were evaluated for their ability to improve the quality of stormwater runoff over a 22-month period in Madison, Wisconsin. Using a lined system with no internal water storage, permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA) were able to significantly remove sediment and sediment-bound pollutant loads from runoff originating f
Flood-frequency characteristics of Wisconsin streams
Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics f
Characterizing response of total suspended solids and total phosphorus loading to weather and watershed characteristics for rainfall and snowmelt events in agricultural watersheds
Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve yea
Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin
Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area
Science and Products
- Science
Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)
Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss. - Data
Select optical signals from water samples collected on the Menomonee River, Underwood Creek, and Jones Island Water Reclamation Facility from 2017-2019, and time-series optical sensor and one-hour mean streamflow data from the Menomonee River 2017-2018
5-day composite river water samples were collected from two sites: Menomonee River (U.S. Geological Survey station number 04087142) and Underwood Creek (U.S. Geological Survey station number 04087088) in Milwaukee, Wisconsin. 5-day composite wastewater (raw sewage) influent samples were also collected from the Jones Island Water Reclamation Facility (U.S. Geological Survey station number 430125087Nutrient and sediment concentrations, loads, yields, and rainfall characteristics at USGS surface and subsurface-tile edge-of-field agricultural monitoring sites in Great Lakes States (ver. 2.0, September 2022)
This data release focuses on nutrient and sediment concentrations, loads, and yields at USGS surface and subsurface-tile edge-of-field (EOF) agricultural monitoring sites in Great Lakes States. Water quality and rainfall metrics are summarized by individual flow events to evaluate the contribution of EOF losses to headwater stream networks in agricultural landscapes. USGS EOF sites are components - Publications
Assessment of restorative maintenance practices on the infiltration capacity of permeable pavement
Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat runoff. Regular restorative maintenance practices can alleviate this issue and prolong the usefuStormwater-quality performance of line permeable pavement systems
Three permeable pavements were evaluated for their ability to improve the quality of stormwater runoff over a 22-month period in Madison, Wisconsin. Using a lined system with no internal water storage, permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA) were able to significantly remove sediment and sediment-bound pollutant loads from runoff originating fFlood-frequency characteristics of Wisconsin streams
Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics fCharacterizing response of total suspended solids and total phosphorus loading to weather and watershed characteristics for rainfall and snowmelt events in agricultural watersheds
Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve yeaCharacterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin
Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area