Phil van Mantgem is a research ecologist at the Western Ecological Research Center.
RESEARCH INTERESTS
- Conservation biology
- Fire ecology
- Forest ecology
Professional Experience
Research Ecologist, USGS, Redwood Field Station, Arcata, CA, 2008 - Present
Ecologist, USGS, Sequoia and Kings Canyon Field Station, Three Rivers, CA, 2000 - 2008
Education and Certifications
Ph.D., Ecology, University of California, Davis, CA 2001
M.S., Plant Biology, University of California, Davis, CA 1996
B.S., Botany, University of Iowa, Iowa City, IA 1991
Science and Products
WERC Fire Science
WERC scientists are defining the past, present, and future of wildfires for wildlife and human communities. Explore this webpage to learn about specific, ongoing projects across California and parts of Nevada.
Understanding Fire-caused Vegetation Type Conversion in Southwestern Conifer Forests under Current and Future Climate Conditions
Fire size, frequency, overall area burned, and severity are increasing across many vegetation types in the southwestern U.S. In many cases, large contiguous areas are burning repeatedly at high severity, triggering vegetation type conversions (VTC), where once-dominant coniferous forests fail to return to their pre-fire state, often transitioning to shrub- or grass-dominated systems. Loss of these
Post-Fire Conifer Regeneration Under a Warming Climate: Will Severe Fire Be a Catalyst for Forest Loss?
The Southwest U.S. is experiencing hotter droughts, which are contributing to more frequent, severe wildfires. These droughts also stress vegetation, which can make it more difficult for forests to recover after fire. Forest regeneration in burned areas may be limited because seeds have to travel long distances to recolonize, and when they do arrive, conditions are often unfavorably hot and dry. C
Drought and Western Forests
USGS WERC's Dr. Phil van Mantgem and his collaborators are using plot-based methods to describe change and vulnerability to drought in the forests of the western United States. A focus of this work is the installation and maintenance of large (1 ha) monitoring plots. Many other vegetation monitoring strategies are based on small (0.1 ha) plots, which may not be sufficient to detect changes in...
Forest Restoration in the Western U.S.
This project uses new and existing field data to assess forest restoration treatment effects across broad spatial and temporal scales. WERC's Dr. Phil van Mantgem and project partners are considering the effects of restoration treatments in terms of forest structure, forest stand development, subsequent tree mortality patterns mortality, and how climate influences the success or failure of...
Fire Severity Trends in the Western U.S.
How will increased drought affect forest fire severity? WERC’s Dr. Phil van Mantgem is testing the idea increased drought stress may affect forest fire severity independent of fire intensity. Drought stress prior to fire can affect tree health, potentially resulting in a higher sensitivity to fire-induced damage. Thus, with drought there may be ongoing increases in fire severity (the number of...
Redwood Field Station
The Redwood Field Station is located in Arcata, CA. Click on the following tab to learn more.
Can Prescribed Fire Help Forests Survive Drought in the Sierra Nevada Mountains?
In 2017, California was experiencing its most severe drought in over a millennia. Low rainfall and record high temperatures resulted in increased tree mortality and complete forest diebacks across the West. Though land managers scrambled to respond, they lacked information needed to make informed decisions. Focusing on California’s central and southern Sierra Nevada Mountains, this project seeks t...
Fighting Drought with Fire: A Comparison of Burned and Unburned Forests in Drought-Impacted Areas of the Southwest
Drought is one of the biggest threats facing our forests today. In the western U.S., severe drought and rising temperatures have caused increased tree mortality and complete forest diebacks. Forests are changing rapidly, and while land managers are working to develop long-term climate change adaptation plans, they require tools that can enhance forest resistance to drought now. To address this imm
How Does Drought Influence Fire Severity in the Southwestern U.S.?
There is a growing realization that current warming trends may be associated with increases in the size, frequency, and severity of forest fires in the West. While rising temperatures can create drought conditions that favor severe fires, it is also possible that drought limits the ability of trees to survive a fire. During a drought, there is less water available for trees and more outbreaks of h
Characterizing a link in the terrestrial carbon cycle: a global overview of individual tree mass growth
Forests sequester the majority of the terrestrial biosphere’s carbon and are key components of the global carbon cycle, potentially contributing substantial feedbacks to ongoing climatic changes. It is therefore remarkable that no consensus yet exists about the fundamental nature of tree mass growth (and thus carbon sequestration rate). Specifically, does tree mass growth rate increase, decrease,
Growth, Drought Response, and Genomic Structure Data for Whitebark Pine in the Sierra Nevada of California
These data represent stem growth, needle length growth, and carbon stable isotope ratios from whitebark pine at 27 sites in the Sierra Nevada of California. Values for stem growth were derived from increment cores, processed following standard methods. Needle characteristics were derived from individual trees with needle initiation years opportunistically selected needles for processing. Needle le
Sequoia and Yosemite National Parks Mortality and Fire Data (1990-2019) for Competition-Fire-Drought Interaction Analysis
This dataset records mortality-- including involvement of bark beetles-- and burn severity information for trees in long term forest dynamics plots in Sequoia National Park and Yosemite National Park that experienced fire.
These data support the following publication:
Furniss, T.J., Das, A.J., van Mantgem, P.J., Stephenson, N.L. and Lutz, J.A., 2021. Crowding, climate, and the case for soci
Data for Use in poscrptR Post-fire Conifer Regeneration Prediction Model
These data support poscrptR (Wright et al. 2021). poscrptR is a shiny app that predicts the probability of post-fire conifer regeneration for fire data supplied by the user. The predictive model was fit using presence/absence data collected in 4.4m radius plots (60 square meters). Please refer to Stewart et al. (2020) for more details concerning field data collection, the model fitting process, an
Forest Structure Data for Burned and Unburned Sites at Sequoia and Kings Canyon National Parks
These data represent tree diameter, species, mortality status, and plot attributes from 164 plots in Sequoia and Kings Canyon national parks, California. Plots were matched with local records of recent fire history to determine burn status and year burned if applicable.
These data support the following publication:
van Mantgem, P.J., Caprio, A.C., Stephenson, N.L. and Das, A.J., 2021. Forest Re
Post-fire conifer regeneration observations for National Forest land in California (2009 - 2017)
This data consists of presence/absence observations for post-fire conifer regeneration. The data also includes estimates of plot-level topography (slope, aspect), relativized differenced normalized burn ratio (RdNBR), post-fire climate, live basal area, and seed rain.
These data support the following publication:
Fire Caused Tree Mortality in Western US National Parks (2018)(ver. 2.0, February 2020)
This data consists of observations of individual trees that were subjected to prescribed fire in western US national parks. Information on individual trees include measurements of tree size, competition, and fire-caused damage. The data also includes estimates of plot-level vapor pressure deficit anomaly before fire.
These data support the following publication:
Van Mantgem, P.J., Falk, D.A., Wil
Filter Total Items: 66
Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury
A key uncertainty of empirical models of post-fire tree mortality is understanding the drivers of elevated post-fire mortality several years following fire, known as delayed mortality. Delayed mortality can represent a substantial fraction of mortality, particularly for large trees that are a conservation focus in western US coniferous forests. Current post-fire tree mortality models have undergon
Vegetation type conversion in the US Southwest: Frontline observations and management responses
Forest and nonforest ecosystems of the western United States are experiencing major transformations in response to land-use change, climate warming, and their interactive effects with wildland fire. Some ecosystems are transitioning to persistent alternative types, hereafter called “vegetation type conversion” (VTC). VTC is one of the most pressing management issues in the southwestern US, yet cur
Long-term effects of prescribed fire on large tree growth in mixed conifer forests at Lassen Volcanic National Park, California
Prescribed fire in dry coniferous forests of the western U.S. is used to reduce fire hazards. How large, old trees respond to these treatments is an important management consideration. Growth is a key indicator of residual tree condition, which can be predictive of mortality and response to future disturbance. Using a combination of long-term plot records and dendrochronological samples, we analyz
Mechanisms of forest resilience
Ecosystems are dynamic systems with complex responses to environmental variation. In response to pervasive stressors of changing climate and disturbance regimes, many ecosystems are realigning rapidly across spatial scales, in many cases moving outside of their observed historical range of variation into alternative ecological states. In some cases, these new states are transitory and represent su
Crowding, climate, and the case for social distancing among trees
In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate–vegetation–disturbance interactions. Current strategies for creating resilient forests often rely on retr
Forest resistance to extended drought enhanced by prescribed fire in low elevation forests of the Sierra Nevada
Prescribed fire reduces fire hazards by removing dead and live fuels (small trees and shrubs). Reductions in forest density following prescribed fire treatments (often in concert with mechanical treatments) may also lessen competition so that residual trees might be more likely to survive when confronted with additional stressors, such as drought. The current evidence for these effects is mixed an
U.S. Geological Survey wildland fire science strategic plan, 2021–26
The U.S. Geological Survey (USGS) Wildland Fire Science Strategic Plan defines critical, core fire science capabilities for understanding fire-related and fire-responsive earth system processes and patterns, and informing management decision making. Developed by USGS fire scientists and executive leadership, and informed by conversations with external stakeholders, the Strategic Plan is aligned wi
By
Ecosystems Mission Area, Natural Hazards Mission Area, Earth Resources Observation and Science Center, Science Analytics and Synthesis (SAS) Program, Alaska Science Center, Earth Resources Observation and Science (EROS) Center , Forest and Rangeland Ecosystem Science Center, Fort Collins Science Center, Geologic Hazards Science Center, Geology, Geophysics, and Geochemistry Science Center, Western Ecological Research Center (WERC)
Vegetation community monitoring: Species composition and biophysical gradients in Klamath Network parks
The Klamath Network of the National Park Service consists of six park units located in northern California and southern Oregon. The Network began implementing a vegetation monitoring protocol in 2011 to identify ecologically significant vegetation trends in the parks. The premise of the protocol is that multivariate analyses of species composition data is the most robust early detection means for
Patterns of conifer invasion following prescribed fire in grasslands and oak woodlands of Redwood National Park, California
The invasion, or “encroachment”, of native conifers commonly occurs in the absence of frequent fire in deciduous woodlands and grasslands of the Pacific Northwest, USA. To effectively target restoration activities, managers require a better understanding of the outcomes of prescribed fire and the spatial patterns of conifer invasions. We examined the duration of prescribed fire effectiveness for c
Seed production patterns of surviving Sierra Nevada conifers show minimal change following drought
Reproduction is a key component of ecological resilience in forest ecosystems, so understanding how seed production is influenced by extreme drought is key to understanding forest recovery trajectories. If trees respond to mortality-inducing drought by preferentially allocating resources for reproduction, the recovery of the stand to pre-drought conditions may be enhanced accordingly. We used a 20
Evaluating and optimizing the use of logistic regression for tree mortality models in the First Order Fire Effects Model (FOFEM)
Wildland fires burn millions of forested hectares annually around the world, affecting biodiversity, carbon storage, hydrologic processes, and ecosystem services largely through fire-induced tree mortality (Bond-Lamberty et al. 2007; Dantas et al. 2016). In spite of this widespread importance, the underlying mechanisms of fire-caused tree mortality remain poorly understood, (Hood et al. 2018). Pos
Effects of postfire climate and seed availability on postfire conifer regeneration
Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform p
poscrptR
poscrptR is a simple R package with the sole purpose of distributing a shiny app
for predicting post-fire conifer regeneration. Learn more about shiny apps here.
Seed source, not drought, determines patterns of seed production in Sierra Nevada conifers
This release consists of data collected from 26 plots in two national parks over a 19-year period. The data consists of plot-level seed counts for three genera, number of seed traps, live tree basal area, plot area, and climate metrics from the gridmet gridded data set, the daymet gridded data set, the PRISM gridded data set, and two nearby COOP stations.
Science and Products
- Science
WERC Fire Science
WERC scientists are defining the past, present, and future of wildfires for wildlife and human communities. Explore this webpage to learn about specific, ongoing projects across California and parts of Nevada.Understanding Fire-caused Vegetation Type Conversion in Southwestern Conifer Forests under Current and Future Climate Conditions
Fire size, frequency, overall area burned, and severity are increasing across many vegetation types in the southwestern U.S. In many cases, large contiguous areas are burning repeatedly at high severity, triggering vegetation type conversions (VTC), where once-dominant coniferous forests fail to return to their pre-fire state, often transitioning to shrub- or grass-dominated systems. Loss of thesePost-Fire Conifer Regeneration Under a Warming Climate: Will Severe Fire Be a Catalyst for Forest Loss?
The Southwest U.S. is experiencing hotter droughts, which are contributing to more frequent, severe wildfires. These droughts also stress vegetation, which can make it more difficult for forests to recover after fire. Forest regeneration in burned areas may be limited because seeds have to travel long distances to recolonize, and when they do arrive, conditions are often unfavorably hot and dry. CDrought and Western Forests
USGS WERC's Dr. Phil van Mantgem and his collaborators are using plot-based methods to describe change and vulnerability to drought in the forests of the western United States. A focus of this work is the installation and maintenance of large (1 ha) monitoring plots. Many other vegetation monitoring strategies are based on small (0.1 ha) plots, which may not be sufficient to detect changes in...Forest Restoration in the Western U.S.
This project uses new and existing field data to assess forest restoration treatment effects across broad spatial and temporal scales. WERC's Dr. Phil van Mantgem and project partners are considering the effects of restoration treatments in terms of forest structure, forest stand development, subsequent tree mortality patterns mortality, and how climate influences the success or failure of...Fire Severity Trends in the Western U.S.
How will increased drought affect forest fire severity? WERC’s Dr. Phil van Mantgem is testing the idea increased drought stress may affect forest fire severity independent of fire intensity. Drought stress prior to fire can affect tree health, potentially resulting in a higher sensitivity to fire-induced damage. Thus, with drought there may be ongoing increases in fire severity (the number of...Redwood Field Station
The Redwood Field Station is located in Arcata, CA. Click on the following tab to learn more.Can Prescribed Fire Help Forests Survive Drought in the Sierra Nevada Mountains?
In 2017, California was experiencing its most severe drought in over a millennia. Low rainfall and record high temperatures resulted in increased tree mortality and complete forest diebacks across the West. Though land managers scrambled to respond, they lacked information needed to make informed decisions. Focusing on California’s central and southern Sierra Nevada Mountains, this project seeks t...Fighting Drought with Fire: A Comparison of Burned and Unburned Forests in Drought-Impacted Areas of the Southwest
Drought is one of the biggest threats facing our forests today. In the western U.S., severe drought and rising temperatures have caused increased tree mortality and complete forest diebacks. Forests are changing rapidly, and while land managers are working to develop long-term climate change adaptation plans, they require tools that can enhance forest resistance to drought now. To address this immHow Does Drought Influence Fire Severity in the Southwestern U.S.?
There is a growing realization that current warming trends may be associated with increases in the size, frequency, and severity of forest fires in the West. While rising temperatures can create drought conditions that favor severe fires, it is also possible that drought limits the ability of trees to survive a fire. During a drought, there is less water available for trees and more outbreaks of hCharacterizing a link in the terrestrial carbon cycle: a global overview of individual tree mass growth
Forests sequester the majority of the terrestrial biosphere’s carbon and are key components of the global carbon cycle, potentially contributing substantial feedbacks to ongoing climatic changes. It is therefore remarkable that no consensus yet exists about the fundamental nature of tree mass growth (and thus carbon sequestration rate). Specifically, does tree mass growth rate increase, decrease, - Data
Growth, Drought Response, and Genomic Structure Data for Whitebark Pine in the Sierra Nevada of California
These data represent stem growth, needle length growth, and carbon stable isotope ratios from whitebark pine at 27 sites in the Sierra Nevada of California. Values for stem growth were derived from increment cores, processed following standard methods. Needle characteristics were derived from individual trees with needle initiation years opportunistically selected needles for processing. Needle leSequoia and Yosemite National Parks Mortality and Fire Data (1990-2019) for Competition-Fire-Drought Interaction Analysis
This dataset records mortality-- including involvement of bark beetles-- and burn severity information for trees in long term forest dynamics plots in Sequoia National Park and Yosemite National Park that experienced fire. These data support the following publication: Furniss, T.J., Das, A.J., van Mantgem, P.J., Stephenson, N.L. and Lutz, J.A., 2021. Crowding, climate, and the case for sociData for Use in poscrptR Post-fire Conifer Regeneration Prediction Model
These data support poscrptR (Wright et al. 2021). poscrptR is a shiny app that predicts the probability of post-fire conifer regeneration for fire data supplied by the user. The predictive model was fit using presence/absence data collected in 4.4m radius plots (60 square meters). Please refer to Stewart et al. (2020) for more details concerning field data collection, the model fitting process, anForest Structure Data for Burned and Unburned Sites at Sequoia and Kings Canyon National Parks
These data represent tree diameter, species, mortality status, and plot attributes from 164 plots in Sequoia and Kings Canyon national parks, California. Plots were matched with local records of recent fire history to determine burn status and year burned if applicable. These data support the following publication: van Mantgem, P.J., Caprio, A.C., Stephenson, N.L. and Das, A.J., 2021. Forest RePost-fire conifer regeneration observations for National Forest land in California (2009 - 2017)
This data consists of presence/absence observations for post-fire conifer regeneration. The data also includes estimates of plot-level topography (slope, aspect), relativized differenced normalized burn ratio (RdNBR), post-fire climate, live basal area, and seed rain. These data support the following publication:Fire Caused Tree Mortality in Western US National Parks (2018)(ver. 2.0, February 2020)
This data consists of observations of individual trees that were subjected to prescribed fire in western US national parks. Information on individual trees include measurements of tree size, competition, and fire-caused damage. The data also includes estimates of plot-level vapor pressure deficit anomaly before fire. These data support the following publication: Van Mantgem, P.J., Falk, D.A., Wil - Multimedia
- Publications
Filter Total Items: 66
Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury
A key uncertainty of empirical models of post-fire tree mortality is understanding the drivers of elevated post-fire mortality several years following fire, known as delayed mortality. Delayed mortality can represent a substantial fraction of mortality, particularly for large trees that are a conservation focus in western US coniferous forests. Current post-fire tree mortality models have undergonVegetation type conversion in the US Southwest: Frontline observations and management responses
Forest and nonforest ecosystems of the western United States are experiencing major transformations in response to land-use change, climate warming, and their interactive effects with wildland fire. Some ecosystems are transitioning to persistent alternative types, hereafter called “vegetation type conversion” (VTC). VTC is one of the most pressing management issues in the southwestern US, yet curLong-term effects of prescribed fire on large tree growth in mixed conifer forests at Lassen Volcanic National Park, California
Prescribed fire in dry coniferous forests of the western U.S. is used to reduce fire hazards. How large, old trees respond to these treatments is an important management consideration. Growth is a key indicator of residual tree condition, which can be predictive of mortality and response to future disturbance. Using a combination of long-term plot records and dendrochronological samples, we analyzMechanisms of forest resilience
Ecosystems are dynamic systems with complex responses to environmental variation. In response to pervasive stressors of changing climate and disturbance regimes, many ecosystems are realigning rapidly across spatial scales, in many cases moving outside of their observed historical range of variation into alternative ecological states. In some cases, these new states are transitory and represent suCrowding, climate, and the case for social distancing among trees
In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate–vegetation–disturbance interactions. Current strategies for creating resilient forests often rely on retrForest resistance to extended drought enhanced by prescribed fire in low elevation forests of the Sierra Nevada
Prescribed fire reduces fire hazards by removing dead and live fuels (small trees and shrubs). Reductions in forest density following prescribed fire treatments (often in concert with mechanical treatments) may also lessen competition so that residual trees might be more likely to survive when confronted with additional stressors, such as drought. The current evidence for these effects is mixed anU.S. Geological Survey wildland fire science strategic plan, 2021–26
The U.S. Geological Survey (USGS) Wildland Fire Science Strategic Plan defines critical, core fire science capabilities for understanding fire-related and fire-responsive earth system processes and patterns, and informing management decision making. Developed by USGS fire scientists and executive leadership, and informed by conversations with external stakeholders, the Strategic Plan is aligned wiByEcosystems Mission Area, Natural Hazards Mission Area, Earth Resources Observation and Science Center, Science Analytics and Synthesis (SAS) Program, Alaska Science Center, Earth Resources Observation and Science (EROS) Center , Forest and Rangeland Ecosystem Science Center, Fort Collins Science Center, Geologic Hazards Science Center, Geology, Geophysics, and Geochemistry Science Center, Western Ecological Research Center (WERC)Vegetation community monitoring: Species composition and biophysical gradients in Klamath Network parks
The Klamath Network of the National Park Service consists of six park units located in northern California and southern Oregon. The Network began implementing a vegetation monitoring protocol in 2011 to identify ecologically significant vegetation trends in the parks. The premise of the protocol is that multivariate analyses of species composition data is the most robust early detection means forPatterns of conifer invasion following prescribed fire in grasslands and oak woodlands of Redwood National Park, California
The invasion, or “encroachment”, of native conifers commonly occurs in the absence of frequent fire in deciduous woodlands and grasslands of the Pacific Northwest, USA. To effectively target restoration activities, managers require a better understanding of the outcomes of prescribed fire and the spatial patterns of conifer invasions. We examined the duration of prescribed fire effectiveness for cSeed production patterns of surviving Sierra Nevada conifers show minimal change following drought
Reproduction is a key component of ecological resilience in forest ecosystems, so understanding how seed production is influenced by extreme drought is key to understanding forest recovery trajectories. If trees respond to mortality-inducing drought by preferentially allocating resources for reproduction, the recovery of the stand to pre-drought conditions may be enhanced accordingly. We used a 20Evaluating and optimizing the use of logistic regression for tree mortality models in the First Order Fire Effects Model (FOFEM)
Wildland fires burn millions of forested hectares annually around the world, affecting biodiversity, carbon storage, hydrologic processes, and ecosystem services largely through fire-induced tree mortality (Bond-Lamberty et al. 2007; Dantas et al. 2016). In spite of this widespread importance, the underlying mechanisms of fire-caused tree mortality remain poorly understood, (Hood et al. 2018). PosEffects of postfire climate and seed availability on postfire conifer regeneration
Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform p - Software
poscrptR
poscrptR is a simple R package with the sole purpose of distributing a shiny app for predicting post-fire conifer regeneration. Learn more about shiny apps here.Seed source, not drought, determines patterns of seed production in Sierra Nevada conifers
This release consists of data collected from 26 plots in two national parks over a 19-year period. The data consists of plot-level seed counts for three genera, number of seed traps, live tree basal area, plot area, and climate metrics from the gridmet gridded data set, the daymet gridded data set, the PRISM gridded data set, and two nearby COOP stations. - News