Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 910

Photogeology: Part W: Apollo 16 landing site: summary of Earth-based remote sensing data

The purpose of the infrared (IR) and radar study of the Apollo data is to establish lunar surface conditions in the vicinity of the orbital tracks of the Apollo command modules during the J-series missions. Correlations and comparisons between the Earth-based radar observations, IR observations, and other data will be plotted on photomaps produced from the mapping and panoramic cameras. In additio
Authors
S.H. Zisk, Harold Masursky, D. J. Milton, G. G. Schaber, R.W. Shorthill, T.W. Thompson

Photogeology: Part S: mare ridges and arches in southern Oceanus Procellarum

Low-relief mare features such as ridges and arches are best studied by using stereoscopic photographs taken at low Sun angles. Apollo 16 metric camera photography of the southern Oceanus Procellarum east of Letronne Crater reveals a diversity of subtle features (fig. 29-125) and adds significantly to an understanding of the forms of mare ridges and arches their relative ages, and their association
Authors
George W. Colton, Keith A. Howard, Henry J. Moore

Photogeology: Part X: calibration of radar data from Apollo 16 results

Orbital and surface photography collected during the Apollo 16 mission can be used to calibrate existing Earth-based, high-resolution radar maps of the lunar surface. The absence of any theoretical treatment of the radar backscatter from irregular rocks has prevented the assignment of radar-echo cross sections to specific size distributions of rocks. This gap will now be filled with the use of gro
Authors
S.H. Zisk, H. J. Moore

Photogeology: Part N: ejecta blankets of large craters exemplified by King Crater

Details of the ejecta blankets of large, fresh craters provide insight into the mechanics of deposition and the sequence of emplacement of impact debris. King Crater is the freshest of the three large, rayed craters photographed from Apollo 16; the others are Theophilus and Langrenus Craters. King Crater is comparable in youth to Tycho Crater, and the details of its ejecta blanket help to interpre
Authors
Keith A. Howard

Photogeology: Part L: crater morphometry

Morphometric analysis of lunar craters (ref. 29-75) complements the more traditional photointerpretive study of crater morphology. These two indirect approaches to the scientific investigation of lunar craters continue to be productive because the preferred alternative method, direct field examination of specific large craters, is not being undertaken in the current series of manned lunar landings
Authors
Richard J. Pike

Photogeology: Part J: ranger and other impact craters photographed by Apollo 16

The Apollo 16 crew photographed an unusual variety of impact craters, including the two craters produced by the impacts of Ranger 7 and 9 spacecraft, small craters produced by boulders as they bounced downslope, craters with marked bilateral symmetry, and primary craters with a wide range of morphologies and sizes. Ranger impact craters and examples of other craters are discussed briefly in this s
Authors
H. J. Moore

Photogeology: Part G: structural aspects of Imbrium sculpture

Apollo 16 metric photographs taken at low to high Sun angles (from approximately 7° to 40°) provide the first stereographic coverage of the distinctive landforms collectively referred to as "Imbrium sculpture" (refs. 29-40 and 29-41). The sculpture consists of a series of nearly linear ridges and troughs extending radially outward for more than 1000 km from the rim of the Imbrium Basin. The sculpt
Authors
David H. Scott

Photogeology: Part F: reinterpretations of the northern Nectaris Basin

Geologic units of the Nectaris Basin rim have been interpreted as partly impact and partly volcanic in origin (refs. 29-4, 29-21, 29-35, 29-38, and 29-39). An exclusively volcanic origin was proposed for the material in the vicinity of the Apollo 16 landing site, slightly northwest of the Nectaris Basin (ref. 29-36). In view of the dominance of breccia and the paucity of volcanic material in the r
Authors
Don E. Wilhelms

Photogeology: Part D: Descartes highlands: possible analogs around the Orientale Basin

The Descartes highlands are adjacent to the terra plain on which the Apollo 16 lunar module landed (fig. 29-13). A variety of volcanic origins was proposed for the highlands before the mission (refs. 29-4, 29-21, and 29-35 to 29-37), but the returned samples of the area consist almost exclusively of nonvolcanic breccias. The breccias obtained from Stone Mountain have not been identified conclusive
Authors
Carroll Ann Hodges

Preliminary examination of lunar samples: Part A: a petrographic and chemical description of samples from the lunar highlands

More than four-fifths of the surface of the Moon consists of a profoundly cratered irregular surface designated terra or highlands by analogy with the terrestrial continents. These terra regions have much higher albedos than the physiographically lower and much smoother mare regions. The difference in albedo can now be ascribed to a fundamental difference in the chemical and mineralogical characte
Authors

Photogeology: Part B: Cayley Formation interpreted as basin ejecta

The discovery that samples returned from the Cayley Formation at the Apollo 16 landing site consist mainly of nonvolcanic breccias (secs. 6 and 7 of this report) suggests that the hypothesis in which light plains-forming materials may be ejecta from multi-ring basins should be reevaluated (refs 29-15 to 29-17). Improved information on the morphology and distribution of the Cayley Formation, provid
Authors
R. E. Eggleton, G. G. Schaber

Preliminary geologic investigation of the Apollo 16 landing site

The Apollo 16 landing site in the lunar central highlands encompassed terra plains and adjacent mountainous areas of hilly and furrowed terra. These morphologic units, representing important terrane types in the lunar highlands, had been interpreted as volcanic on most premission geologic maps. However, it became apparent during the mission that there are indeed few or no volcanic rocks or landfor
Authors
W.R. Muehlberger, R. M. Batson, E. L. Boudette, C.M. Duke, R. E. Eggleton, D. P. Elston, A. W. England, V. L. Freeman, M. H. Hait, T.A. Hall, J.W. Head, C. A. Hodges, H. E. Holt, E.D. Jackson, J.A. Jordan, K.B. Larson, D. J. Milton, V. S. Reed, J. J. Rennilson, G. G. Schaber, J.P. Schafer, L. T. Silver, D. Stuart-Alexander, R. L. Sutton, G.A. Swann, R.L. Tyner, G. E. Ulrich, H. G. Wilshire, E.W. Wolfe, J.W. Young