Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2231

The 2023 US 50-State National Seismic Hazard Model: Overview and implications

The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increase
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Edward H. Field, Morgan P. Moschetti, Kishor S. Jaiswal, Kevin R. Milner, Sanaz Rezaeian, Arthur Frankel, Andrea L. Llenos, Andrew J. Michael, Jason M. Altekruse, Sean Kamran Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert E. Chase, Leah M. Salditch, Nicolas Luco, Kenneth S. Rukstales, Julie A Herrick, Demi Leafar Girot, Brad T. Aagaard, Adrian Bender, Michael Blanpied, Richard W. Briggs, Oliver S. Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Elise Hatem, Kirstie Lafon Haynie, Elizabeth H. Hearn, Kaj M. Johnson, Zachary Alan Kortum, N. Simon Kwong, Andrew James Makdisi, Henry (Ben) Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan T. Page, Fred Pollitz, Justin Rubinstein, Bruce E. Shaw, Zheng-Kang Shen, Brian Shiro, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Jessica Ann Thompson Jobe, Erin Wirth, Robert C. Witter

The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast

We present the 2023 U.S. Geological Survey time‐independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time‐averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation of epistemi

Authors
Edward H. Field, Kevin R. Milner, Alexandra Elise Hatem, Peter M. Powers, Fred Pollitz, Andrea L. Llenos, Yuehua Zeng, Kaj M. Johnson, Bruce E. Shaw, Devin McPhillips, Jessica Ann Thompson Jobe, Allison Shumway, Andrew J. Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth H. Hearn, Charles Mueller, Arthur Frankel, Mark D. Petersen, Christopher DuRoss, Richard W. Briggs, Morgan T. Page, Justin Rubinstein, Julie A Herrick

A comprehensive fault system inversion approach: Methods and application to NSHM23

We present updated inversion‐based fault‐system solutions for the 2023 update to the National Seismic Hazard Model (NSHM23), standardizing earthquake rate model calculations on crustal faults across the western United States. We build upon the inversion methodology used in the Third Uniform California Earthquake Rupture Forecast (UCERF3) to solve for time‐independent rates of earthquakes in an int
Authors
Kevin R. Milner, Edward H. Field

The 2022 Chaos Canyon landslide in Colorado: Insights revealed by seismic analysis, field investigations, and remote sensing

An unusual, high-alpine, rapid debris slide originating in ice-rich debris occurred on June 28, 2022, at 16:33:16 MDT at the head of Chaos Canyon, a formerly glacier-covered valley in Rocky Mountain National Park, CO, USA. In this study, we integrate eyewitness videos and seismic records of the event with meteorological data, field observations, pre- and post-event satellite imagery, and uncrewed
Authors
Kate E. Allstadt, Jeffrey A. Coe, Elaine Collins, Francis K. Rengers, Anne Mangeney, Scott M. Esser, Jana Pursley, William L. Yeck, John Bellini, Lance R. Brady

Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake

The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) estimates source characteristics of significant damaging earthquakes, aiming to place events within their seismotectonic framework. Contextualizing the 8 September 2023, Mw 6.8 Al Haouz, Morocco, earthquake is challenging, because it occurred in an enigmatic region of active surface faulting, and low seismicity yet pro
Authors
William L. Yeck, Alexandra Elise Hatem, Dara Elyse Goldberg, William D. Barnhart, Jessica Ann Thompson Jobe, David R. Shelly, Antonio Villasenor, Harley Benz, Paul S. Earle

Fractures, scarps, faults, and landslides mapped using LiDAR, Glacier Bay National Park and Preserve, Alaska

This map of fractures, scarps, faults, and landslides was completed to identify areas in Glacier Bay National Park and Preserve that may present a landslide-generated tsunami hazard. To address the potential of landslide and tsunami hazards in the park, the National Park Service (NPS) and the US Geological Survey (USGS) partnered to conduct a multi-year hazard assessment of Glacier Bay National Pa
Authors
Chad Hults, Jeffrey A. Coe, Nikita N. Avdievitch

Geoelectric field model validation in the southern California Edison system: Case study

Geomagnetic storms are a natural phenomenon that cause magnetic field variations at the surface of the Earth. These variations induce electrical current in natural and artificial conductors at and below the surface, resulting in geomagnetically induced currents (GIC) in power systems. The key to modeling GIC is to estimate the geoelectric field in the region of the power grid. The estimation of GI
Authors
Christopher C. Balch, Chaoyang Jing, Anna Kelbert, Patricia Arons, Kevin Richardson

Global seismic networks operated by the U.S. Geological Survey

The U.S. Geological Survey (USGS) Global Seismographic Network (GSN) Program operates two thirds of the GSN, a network of state‐of‐the‐art, digital seismological and geophysical sensors with digital telecommunications. This network serves as a multiuse scientific facility and a valuable resource for research, education, and monitoring. The other one third of the GSN is funded by the National Scien
Authors
David C. Wilson, Charles R. Hutt, Lind Gee, Adam T. Ringler, Robert E. Anthony

Sediment thickness map of United States Atlantic and Gulf Coastal Plain Strata, and their influence on earthquake ground motions

With the recent successful accounting of basin depth ground-motion adjustments in seismic hazard analyses for select areas of the western United States, we move toward implementing similar adjustments in the Atlantic and Gulf Coastal Plains by constructing a sediment thickness model and evaluating multiple relevant site amplification models for central and eastern United States seismic hazard anal
Authors
Oliver S. Boyd, David Churchwell, Morgan P. Moschetti, Eric M. Thompson, Martin C. Chapman, Okan Ilhan, Thomas L. Pratt, Sean Kamran Ahdi, Sanaz Rezaeian

Kinematic evolution of a large paraglacial landslide in the Barry Arm fjord of Alaska

Our warming climate is adversely affecting cryospheric landscapes via glacial retreat, permafrost degradation, and associated slope destabilization. In Prince William Sound, Alaska, the rapid retreat of Barry Glacier has destabilized the slopes flanking the glacier, resulting in numerous landslides. The largest of these landslides (∼500 Mm3 in volume) is more than 2 km wide and has the potential t
Authors
Lauren N. Schaefer, Jeffrey A. Coe, Katreen Wikstrom Jones, Brian D. Collins, Dennis M. Staley, Michael E. West, Ezgi Karasozen, Charles Prentice-James Miles, Gabriel J. Wolken, Ronald P. Daanan, Kelli Wadsworth Baxstrom

Steady-state forms of channel profiles shaped by debris flow and fluvial processes

Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on st
Authors
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, Katherine R. Barnhart
Was this page helpful?