Hydrogeology
Hydrogeology
Filter Total Items: 8
A Shallow to Deep View Inside the Hydrothermally Altered and Mineralized Silverton Caldera Complex: New Geologic Insights Gained From Modern Geophysical Interpretations
The Silverton caldera complex in southwest Colorado hosts base and precious metals that have been mined since the late 1800s. Extensive mine workings, excellent bedrock exposures, and deeply incised drainages make this area a natural laboratory ideally suited for furthering our understanding of the mineral systems in a volcanic environment. In addition, state-of-the-art geophysical data processing...
Metal Transport in Mineralized Mountain Watersheds
The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
Interdisciplinary Methods and Applications in Geophysics (IMAGe)
The project focuses on the development of novel geophysical techniques that improve our ability to understand Earth's subsurface, with broad relevance to the Mineral Resources Program and the USGS Science Strategy. Our goal is to develop and maintain state-of-the art geophysical capabilities that support the diverse science needs of USGS projects that aim to meet the challenges of the 21st century...
Non-Traditional Stable Isotopes
Understanding the genesis of ore deposits and their behavior in the environment is a subject of great importance to the Nation. A relatively new tool to aid in these efforts to investigate the origin and environmental effects of ore deposits is the use of "heavy" metal stable isotopes. Our research objectives are to utilize various isotopic systems to advance our understanding of ore genesis and...
Geochemical Signatures and Environmental Impacts of Ore and Trace Mineralization in the Southern Midcontinent
The overall project objective is a comprehensive analysis of the natural and anthropogenic consequences of extensive ore and trace mineralization in the southern midcontinent of the U.S. with a focus on Missouri. This will be conducted at two scales: 1) landscape and 2) process-level. 1) Landscape scale using geospatial and machine learning techniques to combine multiple geochemical and geologic...
Geophysical Infrastructure Studies: Earthen Dams and Abandoned Mine Lands
Geophysical Infrastructure Studies is comprised of a series of applied research projects focused on studying site-specific problems at earthen dams and abandoned mine lands. An appropriate suite of geophysical methods are chosen for each project and its particular goals and geologic environment. These projects are funded by the federal agencies in charge of the risk mitigation, assessment, or...
Geophysical mapping of produced water in near-surface environments
This task within the Oil and Gas Waters Project focuses on the development of oil and gas resources results in substantial volumes of produced water. Particularly when produced from deep geologic formations, these waters can exhibit elevated salinity in comparison to shallow groundwater at the same location. Knowing the spatial and temporal occurrence of high salinity produced water in groundwater...
Geochemical Signatures of Covered Mineral Deposits in the Northern Midcontinent
We are evaluating the potential of geochemical prospecting techniques that have shown promise in other covered terranes for mineral exploration in the northern midcontinent of the U.S. Novel components will be added to these methods with the objective of method advancement and improving our understanding of processes controlling the transmission of unique geochemical signatures from buried mineral...