Skip to main content
U.S. flag

An official website of the United States government

Kansas Water Science Center

Our Kansas Water Science Center priority is to continue the important work of the Department of the Interior and the USGS, while also maintaining the health and safety of our employees and community.  Based on guidance from the White House, the CDC, and state and local authorities, we are shifting our operations to a virtual mode and have minimal staffing within our office

News

link

KSWSC Quarterly Newsletter - January 2023

link

How USGS Engages Stakeholders to Guide Water-Data Delivery

link

KSWSC Quarterly Newsletter - October 2022

Publications

Linear regression model documentation for computing water-quality constituent concentrations or densities using continuous real-time water-quality data for the Kansas River above Topeka Weir at Topeka, Kansas, November 2018 through June 2021

The Kansas River and its associated alluvial aquifer provide drinking water to more than 950,000 people in northeastern Kansas. Water suppliers that rely on the Kansas River as a water-supply source use physical and chemical processes to treat and remove contaminants before public distribution. An early-notification system of changing water-quality conditions allows water suppliers to proactively

Juxtaposition of intensive agriculture, vulnerable aquifers, and mixed chemical/microbial exposures in private-well tapwater in northeast Iowa

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes

Contaminant exposure and transport from three potential reuse waters within a single watershed

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to

Science

Characterization of Potentially Toxic CyanoHAB Initiation in Slow-Moving Streams, Wetlands, and Oxbows

Targeted sampling in selected slow-moving streams, wetlands, and oxbows to receiving reservoirs and rivers will allow us to better characterize the hydrologic, water-quality, and biological conditions present during the formation and transport of potentially toxic cyanobacteria blooms.
link

Characterization of Potentially Toxic CyanoHAB Initiation in Slow-Moving Streams, Wetlands, and Oxbows

Targeted sampling in selected slow-moving streams, wetlands, and oxbows to receiving reservoirs and rivers will allow us to better characterize the hydrologic, water-quality, and biological conditions present during the formation and transport of potentially toxic cyanobacteria blooms.
Learn More
link

Detecting Sublethal Effects of Harmful Algal Blooms in Mammalian and Avian Cells

USGS Researchers are collaborating to study avian and mammalian cells to detect sublethal toxin effects following exposure to harmful algal blooms.
Learn More

Kansas River Time of Travel Study

The Kansas River provides drinking water for multiple cities in northeastern Kansas and is used for recreational purposes. Thus, improving the scientific knowledge of streamflow velocities and traveltimes will greatly aid in water-treatment plans and response to critical events and threats to water supplies. Dye-tracer studies are usually done to enhance knowledge of transport characteristics...
link

Kansas River Time of Travel Study

The Kansas River provides drinking water for multiple cities in northeastern Kansas and is used for recreational purposes. Thus, improving the scientific knowledge of streamflow velocities and traveltimes will greatly aid in water-treatment plans and response to critical events and threats to water supplies. Dye-tracer studies are usually done to enhance knowledge of transport characteristics...
Learn More