Skip to main content
U.S. flag

An official website of the United States government

Mapping Application Development

Filter Total Items: 43

Assessment of compound flood risk from the combined effects of sea level rise on storm surge, tidal and groundwater flooding, and stormwater

BACKGROUND Long Island Sound has 600 miles of coastline and there are over 23 million people living within 50 miles of its shores. In response to water-quality issues and nitrogen pollution in the Sound, Congress created the Long Island Sound Study (LISS) in 1985. LISS is a partnership of federal, state, and local government agencies, private organizations and educational institutions working tog
link

Assessment of compound flood risk from the combined effects of sea level rise on storm surge, tidal and groundwater flooding, and stormwater

BACKGROUND Long Island Sound has 600 miles of coastline and there are over 23 million people living within 50 miles of its shores. In response to water-quality issues and nitrogen pollution in the Sound, Congress created the Long Island Sound Study (LISS) in 1985. LISS is a partnership of federal, state, and local government agencies, private organizations and educational institutions working tog
Learn More

HAIL (Hydrologic Applied Innovations Lab)

HAIL (Hydrologic Applied Innovations Lab)
link

HAIL (Hydrologic Applied Innovations Lab)

HAIL (Hydrologic Applied Innovations Lab)
Learn More

Bathymetry of New York City’s East of Hudson Reservoirs

Background: The New York City Department of Environmental Protection (DEP) maintains an extensive network of reservoirs and aqueducts for water collection, storage, and transport; it supplies more than one billion gallons of drinking water daily to more than nine million people. The East of Hudson (EOH) network (fig. 1) includes thirteen reservoirs – Amawalk, Bog Brook, Boyd Corners, Cross River,
link

Bathymetry of New York City’s East of Hudson Reservoirs

Background: The New York City Department of Environmental Protection (DEP) maintains an extensive network of reservoirs and aqueducts for water collection, storage, and transport; it supplies more than one billion gallons of drinking water daily to more than nine million people. The East of Hudson (EOH) network (fig. 1) includes thirteen reservoirs – Amawalk, Bog Brook, Boyd Corners, Cross River,
Learn More

Determination of Sources of Water to the Tully Valley Mudboils

Background and Problem Tully Valley is part of the Onondaga Trough, which extends from the Valley Heads Moraine in the south to Onondaga Lake in the north near Syracuse, New York (fig. 1). The Onondaga Trough is filled with a complex sequence of glacial and post-glacial sediments that overlie Devonian carbonate rock and shale and Silurian shale and salt (fig.2). Mudboils, volcano-like cones o
link

Determination of Sources of Water to the Tully Valley Mudboils

Background and Problem Tully Valley is part of the Onondaga Trough, which extends from the Valley Heads Moraine in the south to Onondaga Lake in the north near Syracuse, New York (fig. 1). The Onondaga Trough is filled with a complex sequence of glacial and post-glacial sediments that overlie Devonian carbonate rock and shale and Silurian shale and salt (fig.2). Mudboils, volcano-like cones o
Learn More

Geographical Information Systems (GIS)

Geographical Information Systems Information and Data
link

Geographical Information Systems (GIS)

Geographical Information Systems Information and Data
Learn More

Groundwater Sustainability of the Long Island Aquifer System

Groundwater sustainability can be best defined as the development and use of groundwater in a manner that can be maintained for an indefinite time without causing unacceptable environmental or socioeconomic consequences. Informed management of the Long Island aquifer system can help ensure a regionally sustainable groundwater resource. The USGS and New York State Department of Environmental...
link

Groundwater Sustainability of the Long Island Aquifer System

Groundwater sustainability can be best defined as the development and use of groundwater in a manner that can be maintained for an indefinite time without causing unacceptable environmental or socioeconomic consequences. Informed management of the Long Island aquifer system can help ensure a regionally sustainable groundwater resource. The USGS and New York State Department of Environmental...
Learn More

Hydrogeologic-Framework Mapping - Long Island, New York

HomeLong Island is underlain by unconsolidated Holocene deposits, glacial deposits of Pleistocene age, and coastal-plain deposits of Late Cretaceous age. These sediments consist of gravel, sand, silt, and clay underlain by crystalline bedrock of early Paleozoic age (fig. 1). The bedrock is relatively impermeable, and forms the base of the groundwater-flow system on Long Island. The geologic and...
link

Hydrogeologic-Framework Mapping - Long Island, New York

HomeLong Island is underlain by unconsolidated Holocene deposits, glacial deposits of Pleistocene age, and coastal-plain deposits of Late Cretaceous age. These sediments consist of gravel, sand, silt, and clay underlain by crystalline bedrock of early Paleozoic age (fig. 1). The bedrock is relatively impermeable, and forms the base of the groundwater-flow system on Long Island. The geologic and...
Learn More

Saltwater-Interface Mapping - Long Island, New York

HomeSaltwater intrusion is the most common type of water-quality degradation in coastal-plain aquifers. In coastal areas, the hydraulic head under predevelopment (nonpumping) conditions is higher on land than in the surrounding saltwater embayments; thus, fresh groundwater flows seaward (from areas of high potential to areas of lower potential) and meets saltwater at an equilibrium point...
link

Saltwater-Interface Mapping - Long Island, New York

HomeSaltwater intrusion is the most common type of water-quality degradation in coastal-plain aquifers. In coastal areas, the hydraulic head under predevelopment (nonpumping) conditions is higher on land than in the surrounding saltwater embayments; thus, fresh groundwater flows seaward (from areas of high potential to areas of lower potential) and meets saltwater at an equilibrium point...
Learn More

Groundwater-Flow Modeling - Long Island, New York

HomeNumerical models provide a means to synthesize existing hydrogeologic information into an internally consistent mathematical representation of a real system or process, and thus are useful tools for testing and improving conceptual models or hypotheses of groundwater-flow systems. The goal of this effort is to develop a regional model for the Long Island aquifer system to simulate changes in...
link

Groundwater-Flow Modeling - Long Island, New York

HomeNumerical models provide a means to synthesize existing hydrogeologic information into an internally consistent mathematical representation of a real system or process, and thus are useful tools for testing and improving conceptual models or hypotheses of groundwater-flow systems. The goal of this effort is to develop a regional model for the Long Island aquifer system to simulate changes in...
Learn More

Groundwater Sustainability - Long Island, New York

HomeGroundwater sustainability can best be defined as the development and use of groundwater in a manner that can be maintained for an indefinite time without causing unacceptable environmental or socioeconomic consequences. Informed management of the Long Island aquifer system can help ensure a regionally sustainable groundwater resource. This study will evaluate the sustainability of Long Island...
link

Groundwater Sustainability - Long Island, New York

HomeGroundwater sustainability can best be defined as the development and use of groundwater in a manner that can be maintained for an indefinite time without causing unacceptable environmental or socioeconomic consequences. Informed management of the Long Island aquifer system can help ensure a regionally sustainable groundwater resource. This study will evaluate the sustainability of Long Island...
Learn More

Lake Ontario Flood Monitoring and Mapping

Problem– Lake Ontario experienced period-of-record (1918-2017) maximum monthly average water levels during May through July 2017. NOAA lake gages recorded instantaneous peaks-of record, 249.2 at Olcott, 249.1 at Rochester, and 249.0 at Oswego and St. Vincent. These high water levels along with wind-generated waves caused flooding of thousands of residences and businesses and the erosion of miles o...
link

Lake Ontario Flood Monitoring and Mapping

Problem– Lake Ontario experienced period-of-record (1918-2017) maximum monthly average water levels during May through July 2017. NOAA lake gages recorded instantaneous peaks-of record, 249.2 at Olcott, 249.1 at Rochester, and 249.0 at Oswego and St. Vincent. These high water levels along with wind-generated waves caused flooding of thousands of residences and businesses and the erosion of miles o...
Learn More

Detailed Aquifer Mapping of the Oneonta Area Otsego and Delaware Counties, New York

Introduction The City of Oneonta and surrounding area is the major population center in Otsego County, N.Y. and home to two colleges (SUNY Oneonta and Hartwick College). The public water supply draws on both surface-water and groundwater sources and serves 15,954 people in the City of Oneonta and parts of the surrounding Town of Oneonta (City of Oneonta, 2013). The remaining population uses domest
link

Detailed Aquifer Mapping of the Oneonta Area Otsego and Delaware Counties, New York

Introduction The City of Oneonta and surrounding area is the major population center in Otsego County, N.Y. and home to two colleges (SUNY Oneonta and Hartwick College). The public water supply draws on both surface-water and groundwater sources and serves 15,954 people in the City of Oneonta and parts of the surrounding Town of Oneonta (City of Oneonta, 2013). The remaining population uses domest
Learn More