Publications
Filter Total Items: 2785
Ambient seismic noise tomography of the Kingdom of Saudi Arabia Ambient seismic noise tomography of the Kingdom of Saudi Arabia
Harrat Rahat is a Cenozoic volcanic field in the west-central part of the Kingdom of Saudi Arabia, 150 kilometers east of the Red Sea, and is the site of the most recent eruption in the country (1256 C.E.; 654 in the year of the Hijra). The city of Al Madīnah lies at the north end of Harrat Rahat, and its volcanic and seismic risks are frequently reassessed. In 2009 C.E. an earthquake...
Authors
Francesco Civilini, Walter D. Mooney, Martha K. Savage, John Townend
Thickness of the Saudi Arabian crust Thickness of the Saudi Arabian crust
As part of a joint Saudi Geological Survey (SGS) and U.S. Geological Survey (USGS) project, we analyzed P-wave receiver functions from seismic stations covering most of the Kingdom of Saudi Arabia to map the thickness of the crust across the Arabia Plate. We present an update of crustal-thickness estimates and fill in gaps for the western Arabian Shield and the rifted margin at the Red...
Authors
Alexander R. Blanchette, Simon L. Klemperer, Walter D. Mooney, Hani M. Zahran
The Saudi Geological Survey-U.S. Geological Survey northern Harrat Rahat project—Styles, rates, causes, and hazards of volcanism near Al Madīnah al Munawwarah, Kingdom of Saudi Arabia The Saudi Geological Survey-U.S. Geological Survey northern Harrat Rahat project—Styles, rates, causes, and hazards of volcanism near Al Madīnah al Munawwarah, Kingdom of Saudi Arabia
Active volcanic systems pose serious hazards to people and property including inundation and incineration by lava, blanketing by tephra (volcanic ash), exposure to noxious volcanic gases, and damage from shallow earthquakes triggered by ascending molten material (magma). To improve understanding of volcanism and associated seismicity on the western Arabia Plate, the Saudi Geological...
Authors
Thomas W. Sisson, Andrew T. Calvert, Walter D. Mooney
The 2023 US 50-State National Seismic Hazard Model: Overview and implications The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Edward H. Field, Morgan P. Moschetti, Kishor S. Jaiswal, Kevin R. Milner, Sanaz Rezaeian, Arthur D. Frankel, Andrea L. Llenos, Andrew J. Michael, Jason M. Altekruse, Sean Kamran Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert E. Chase, Leah M. Salditch, Nico Luco, Kenneth S. Rukstales, Julie A. Herrick, Demi Leafar Girot, Brad T. Aagaard, Adrian Bender, Michael L. Blanpied, Richard W. Briggs, Oliver S. Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Elise Hatem, Kirstie Lafon Haynie, Elizabeth H. Hearn, Kaj M. Johnson, Zachary Alan Kortum, N. Simon Kwong, Andrew James Makdisi, Henry Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan T. Page, Frederick Pollitz, Justin Rubinstein, Bruce E. Shaw, Zheng-Kang Shen, Brian Shiro, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Jessica Ann Thompson Jobe, Erin A. Wirth, Robert C. Witter
The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast
We present the 2023 U.S. Geological Survey time‐independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time‐averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation...
Authors
Edward H. Field, Kevin R. Milner, Alexandra Elise Hatem, Peter M. Powers, Frederick Pollitz, Andrea L. Llenos, Yuehua Zeng, Kaj M. Johnson, Bruce E. Shaw, Devin McPhillips, Jessica Ann Thompson Jobe, Allison Shumway, Andrew J. Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth H. Hearn, Charles Mueller, Arthur D. Frankel, Mark D. Petersen, Christopher DuRoss, Richard W. Briggs, Morgan T. Page, Justin Rubinstein, Julie A. Herrick
A comprehensive fault system inversion approach: Methods and application to NSHM23 A comprehensive fault system inversion approach: Methods and application to NSHM23
We present updated inversion‐based fault‐system solutions for the 2023 update to the National Seismic Hazard Model (NSHM23), standardizing earthquake rate model calculations on crustal faults across the western United States. We build upon the inversion methodology used in the Third Uniform California Earthquake Rupture Forecast (UCERF3) to solve for time‐independent rates of earthquakes...
Authors
Kevin R. Milner, Edward H. Field
Total shortening estimates across the western Greater Caucasus Mountains from balanced cross sections and area balancing Total shortening estimates across the western Greater Caucasus Mountains from balanced cross sections and area balancing
The Greater Caucasus orogen forms the northern edge of the Arabia-Eurasia collision zone. Although the orogen has long been assumed to exhibit dominantly thick-skinned style deformation via reactivation of high-angle extensional faults, recent work suggests the range may have accommodated several hundred kilometers or more of shortening since its ~30 Ma initiation, and this shortening...
Authors
Charles Cashman Trexler, Eric S. Cowgill, Dylan A Vasey, Nathan A. Niemi
Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake
The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) estimates source characteristics of significant damaging earthquakes, aiming to place events within their seismotectonic framework. Contextualizing the 8 September 2023, Mw 6.8 Al Haouz, Morocco, earthquake is challenging, because it occurred in an enigmatic region of active surface faulting, and low...
Authors
William L. Yeck, Alexandra Elise Hatem, Dara Elyse Goldberg, William D. Barnhart, Jessica Ann Thompson Jobe, David R. Shelly, Antonio Villasenor, Harley Benz, Paul S. Earle
Panel review of Ground Motion Characterization Model in 2023 NSHM Panel review of Ground Motion Characterization Model in 2023 NSHM
The 2023 National Seismic Hazard Model (NSHM; Petersen et al., 2023) has two major components – a seismic source characterization (SSC) model and a ground motion characterization (GMC) model. The US Geological Survey (USGS) established separate panels to review and provide input on these two models. Both panels are advisory, meaning that they provide input on technical issues for...
Authors
Jonathan P. Stewart, Norman A. Abrahamson, Gail M. Atkinson, John G. Anderson, Kenneth W. Campbell, Chris H. Cramer, Michael Kolaj, Grace Alexandra Parker
Erratum to an evaluation of the timing accuracy of global and regional seismic stations and networks Erratum to an evaluation of the timing accuracy of global and regional seismic stations and networks
No abstract available.
Authors
Yihong Yang, Xiadong Song, Adam T. Ringler
Fractures, scarps, faults, and landslides mapped using LiDAR, Glacier Bay National Park and Preserve, Alaska Fractures, scarps, faults, and landslides mapped using LiDAR, Glacier Bay National Park and Preserve, Alaska
This map of fractures, scarps, faults, and landslides was completed to identify areas in Glacier Bay National Park and Preserve that may present a landslide-generated tsunami hazard. To address the potential of landslide and tsunami hazards in the park, the National Park Service (NPS) and the US Geological Survey (USGS) partnered to conduct a multi-year hazard assessment of Glacier Bay...
Authors
Chad Hults, Jeffrey A. Coe, Nikita N. Avdievitch
Global seismic networks operated by the U.S. Geological Survey Global seismic networks operated by the U.S. Geological Survey
The U.S. Geological Survey (USGS) Global Seismographic Network (GSN) Program operates two thirds of the GSN, a network of state‐of‐the‐art, digital seismological and geophysical sensors with digital telecommunications. This network serves as a multiuse scientific facility and a valuable resource for research, education, and monitoring. The other one third of the GSN is funded by the...
Authors
David C. Wilson, Charles R. Hutt, Lind Gee, Adam T. Ringler, Robert E. Anthony