Migration and transformation of coastal wetlands in response to rising seas
June 29, 2022
Coastal wetlands are not only among the world’s most valued ecosystems but also among the most threatened by high greenhouse gas emissions that lead to accelerated sea level rise. There is intense debate regarding the extent to which landward migration of wetlands might compensate for seaward wetland losses. By integrating data from 166 estuaries across the conterminous United States, we show that landward migration of coastal wetlands will transform coastlines but not counter seaward losses. Two-thirds of potential migration is expected to occur at the expense of coastal freshwater wetlands, while the remaining one-third is expected to occur at the expense of valuable uplands, including croplands, forests, pastures, and grasslands. Our analyses underscore the need to better prepare for coastal transformations and net wetland loss due to rising seas.
Citation Information
Publication Year | 2022 |
---|---|
Title | Migration and transformation of coastal wetlands in response to rising seas |
DOI | 10.1126/sciadv.abo5174 |
Authors | Michael Osland, Bogdan Chivoiu, Nicholas Enwright, Karen M. Thorne, Glenn R. Guntenspergen, James Grace, Leah Dale, William Brooks, Nathaniel Herold, John W. Day, Fred H. Sklar, Christopher M. Swarzenski |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Science Advances |
Index ID | 70233606 |
Record Source | USGS Publications Warehouse |
USGS Organization | Louisiana Water Science Center; Patuxent Wildlife Research Center; Western Ecological Research Center; Wetland and Aquatic Research Center |
Related Content
Potential landward migration of coastal wetlands in response to sea-level rise within estuarine drainage areas and coastal states of the conterminous United States
We quantified the potential area available for landward migration of tidal saline wetlands and freshwater wetlands due to sea-level rise (SLR) at the estuary scale for 166 estuarine drainage areas and at the state scale for 22 coastal states and District of Columbia. We used 2016 Coastal Change Analysis Program (C-CAP) data in combination with the future wetland migration data under the 1.5 m glob
Estuarine drainage area boundaries for the conterminous United States
To quantify the potential for landward migration at the estuary level, we developed a geospatial dataset for the conterminous United States (CONUS) that identifies the boundaries for estuarine drainage areas. Nine estuarine drainage areas in south Florida were delineated using data developed by the South Florida Water Management District (SFWMD 2018). For the rest of CONUS, we used information con
Karen Thorne, Ph.D.
Research Ecologist
Research Ecologist
Email
Phone
Glenn Guntenspergen, Ph.D.
Research Ecologist
Research Ecologist
Phone
Related Content
Potential landward migration of coastal wetlands in response to sea-level rise within estuarine drainage areas and coastal states of the conterminous United States
We quantified the potential area available for landward migration of tidal saline wetlands and freshwater wetlands due to sea-level rise (SLR) at the estuary scale for 166 estuarine drainage areas and at the state scale for 22 coastal states and District of Columbia. We used 2016 Coastal Change Analysis Program (C-CAP) data in combination with the future wetland migration data under the 1.5 m glob
Estuarine drainage area boundaries for the conterminous United States
To quantify the potential for landward migration at the estuary level, we developed a geospatial dataset for the conterminous United States (CONUS) that identifies the boundaries for estuarine drainage areas. Nine estuarine drainage areas in south Florida were delineated using data developed by the South Florida Water Management District (SFWMD 2018). For the rest of CONUS, we used information con
Karen Thorne, Ph.D.
Research Ecologist
Research Ecologist
Email
Phone
Glenn Guntenspergen, Ph.D.
Research Ecologist
Research Ecologist
Phone