Skip to main content
U.S. flag

An official website of the United States government

The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment

June 30, 2018

The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution marine geophysical data that demonstrate the extent and significance of the SCB submarine landslide complex in terms of late Miocene to present basin evolution and regional geohazard assessment. The new data reveal that submarine landslides cover an area of ~160 km2 along the eastern flank of the Santa Rosa–Cortes Ridge and have emplaced a minimum of 9 to 16 km3 of mass transport deposits along the floor of the SCB during the Quaternary. The failures occur along an onlapping wedge of Pliocene sediment that was uplifted and tilted during the later stages of basin development. The uplifted and steepened Pliocene strata were preconditioned for failure so that parts of the section failed episodically throughout the Quaternary—most likely during large earthquakes. Once failed, the material initially translated as a block glide along a defined failure surface. As transport continued several kilometers across a steep section of the lower slope, the material separated into distinctive proximal and distal components. The failed masses mobilized into debris flows that show evidence for dynamic separation into less and more mobile components that disturbed and eroded underlying stratigraphy in areas most proximal to the source area. The most highly mobilized components and those with the lowest viscosity and yield strength produced flows that blanket the underlying stratigraphy along the distal reaches of deposition. The estimated volumes of individual landslides within the complex (0.1–2.6 km3), the runout distance measured from the headwalls (>20 km), and evidence for relatively high velocity during initial mobilization all suggest that slides in the SCB may have been tsunamigenic. Because many slopes in the California Continental Borderland are either sediment starved or have experienced sediment bypass during the Quaternary, we propose that uplift and rotation of Pliocene deposits are important preconditioning factors for slope failure that need to be systematically evaluated as potential tsunami initiators.

Publication Year 2019
Title The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
DOI 10.2110/sepmsp.110.05
Authors Daniel S. Brothers, Katherine L. Maier, Jared W. Kluesner, James E. Conrad, Jason Chaytor
Publication Type Book Chapter
Publication Subtype Book Chapter
Index ID 70203772
Record Source USGS Publications Warehouse
USGS Organization Coastal and Marine Geology Program; Pacific Coastal and Marine Science Center; Woods Hole Coastal and Marine Science Center