Katherine L Maier (Former Employee)
Science and Products
Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers
Turbidity currents dominate sediment transfer into the deep ocean, and can damage critical seabed infrastructure. It is commonly inferred that powerful turbidity currents are triggered by major external events, such as storms, river floods, or earthquakes. However, basic models for turbidity current triggering remain poorly tested, with few studies accurately recording precise flow...
Authors
Lewis Bailey, Michael Clare, Kurt J. Rosenberger, Matthieu J.B. Cartigny, Peter J. Talling, Charles K. Paull, Roberto Gwiazda, Daniel Parsons, Stephen Simmons, Jingping Xu, Ivan Haigh, Katherine L. Maier, Mary McGann, Eve M. Lundsten
Morphology, structure, and kinematics of the San Clemente and Catalina faults based on high-resolution marine geophysical data, southern California Inner Continental Borderland
Catalina Basin, located within the southern California Inner Continental Borderland (ICB), is traversed by two active submerged fault systems that are part of the broader North America-Pacific plate boundary: the San Clemente fault (along with a prominent splay, the Kimki fault) and the Catalina fault. Previous studies have suggested that the San Clemente fault (SCF) may be accommodating...
Authors
Maureen A. L. Walton, Daniel S. Brothers, James E. Conrad, Katherine L. Maier, Emily C. Roland, Jared W. Kluesner, Peter Dartnell
What determines the downstream evolution of turbidity currents?
Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far fewer measurements from turbidity currents, ensuring they are much more poorly understood. Turbidity currents differ fundamentally from rivers, as...
Authors
Catharina Heerema, Peter J. Talling, Matthieu J.B. Cartigny, Charles K. Paull, Lewis Bailey, Stephen Simmons, Daniel Parsons, Michael Clare, Roberto Gwiazda, Eve M. Lundsten, Krystle Anderson, Katherine L. Maier, Jingping Xu, Esther J. Sumner, Kurt J. Rosenberger, Jenny Gales, Mary McGann, Lionel Carter, Ed Pope
Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California
Submarine canyons provide globally important conduits for sediment and organic carbon transport into the deep-sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water column sampling devices, we address how fine-grained sediment and organic carbon are transported, mixed, fractionated, and buried along a submarine canyon...
Authors
Katherine L. Maier, Kurt J. Rosenberger, Charles K. Paull, Roberto Gwiazda, Jenny Gales, Thomas Lorenson, James P. Barry, Peter J. Talling, Mary McGann, Jingping Xu, Eve M. Lundsten, Krystle Anderson, Steven Litvin, Daniel Parsons, Michael Clare, Stephen Simmons, Esther J. Sumner, Matthieu J.B. Cartigny
Linking direct measurements of turbidity currents to submarine canyon-floor deposits
Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedimentary deposits on Earth. The only record available for most turbidity currents is the deposit they leave behind. Therefore, to understand...
Authors
Katherine L. Maier, Jenny Gales, Charles K. Paull, Kurt J. Rosenberger, Peter J. Talling, Stephen Simmons, Roberto Gwiazda, Mary McGann, Matthieu J.B. Cartigny, Eve M. Lundsten, Krystle Anderson, Michael Clare, Jingping Xu, Daniel Parsons, James P. Barry, Monica Wolfson-Schwher, Nora M. Nieminski, Esther J. Sumner
Powerful turbidity currents driven by dense basal layers
Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirely dilute or driven by a dense basal layer, remain equivocal. Here we present the most detailed direct observations yet from oceanic...
Authors
C. K. Paull, P. J. Talling, Katherine L. Maier, Daniel Parsons, Jingping Xu, D. W. Caress, R. Gwiazda, E. Lundsten, K. Anderson, James P. Barry, M. Chaffey, T. O'Reilly, Kurt J. Rosenberger, Jenny Gales, Brian Kieft, Mary McGann, Samantha E. Simmons, M. McCann, Esther J. Sumner, M. A. Clare, M. J. Cartigny
Controls on submarine canyon head evolution: Monterey Canyon, offshore central California
The Monterey submarine canyon, incised across the continental shelf in Monterey Bay, California, provides a record of the link between onshore tectonism, fluvial transport, and deep-marine deposition. High-resolution seismic-reflection imaging in Monterey Bay reveals an extensive paleocanyon unit buried below the seafloor of the continental shelf around Monterey and Soquel canyon heads...
Authors
Katherine L. Maier, Samuel Y. Johnson, Patrick E. Hart
The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution...
Authors
Daniel S. Brothers, Katherine L. Maier, Jared W. Kluesner, James E. Conrad, Jason Chaytor
Slope failure and mass transport processes along the Queen Charlotte Fault Zone, western British Columbia
Multibeam echosounder (MBES) images, 3.5 kHz seismic-reflection profiles and piston cores obtained along the southern Queen Charlotte Fault Zone are used to map and date mass-wasting events at this transform margin – a seismically active boundary that separates the Pacific Plate from the North American Plate. Whereas the upper continental slope adjacent to and east (upslope) of the fault...
Authors
H. G. Greene, J. Vaughn Barrie, Daniel S. Brothers, James E. Conrad, Kim Conway, Amy E. East, Randolph J. Enkin, Katherine L. Maier, Maureen A. L. Walton, K .M. M. Rohr
The tectonically controlled San Gabriel Channel–Lobe Transition Zone, Catalina Basin, Southern California Borderland
High-resolution geophysical data across the Catalina Basin, offshore southern California, USA, reveal a complex channel–lobe transition zone (CLTZ) and provide an opportunity to characterize an entire seafloor CLTZ in a tectonically active and confined-basin setting. The seafloor morphology, distribution of depositional and erosional features, and location of depocenters in the CLTZ are...
Authors
Katherine L. Maier, Emily C. Roland, Maureen A. L. Walton, James E. Conrad, Daniel S. Brothers, Peter Dartnell, Jared W. Kluesner
Seafloor fluid seeps on Kimki Ridge, offshore southern California: Links to active strike-slip faulting
The Kimki Ridge fluid seeps are located in western Catalina Basin about 60 km southwest of the southern California mainland and at a water depth of approximately 1100 m. Multichannel seismic reflection profiles collected by the U.S. Geological Survey (USGS) in 2014 show acoustic transparency within the Kimki Ridge, suggesting the possibility of fluid seeps and possible sub-seafloor fluid...
Authors
James E. Conrad, Nancy G. Prouty, Maureen A. L. Walton, Jared W. Kluesner, Katherine L. Maier, Mary McGann, Daniel S. Brothers, Emily C. Roland, Peter Dartnell
Unraveling the channel–lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico
Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows...
Authors
Cristian Carvajal, Charles K. Paull, David W. Caress, Andrea Fildani, Eve M. Lundsten, Krystle Anderson, Katherine L. Maier, Mary McGann, Roberto Gwiazda, Juan Carlos Herguera
Multichannel minisparker seismic-reflection data of field activity 2015-617-FA; Monterey Bay, offshore central California from 2015-02-23 to 2015-03-06
This data release contains approximately 190 line-kilometers of processed, high-resolution multichannel seismic-reflection (MCS) profiles that were collected aboard the R/V Snavely in 2015 on U.S. Geological Survey cruise 2015-617-FA in Monterey Bay, offshore central California. The majority of MCS profiles collected are oriented north-south across the Monterey Canyon head to address...
Sediment core data from the northern flank of Monterey Canyon, offshore California
The five files included in this U.S. Geological Survey data release are data from a set of sediment cores acquired from the continental slope, north of Monterey Canyon, offshore central California. Vibracores and push cores were collected with the Monterey Bay Aquarium Research Institutes remotely operated vehicle (ROV) Doc Ricketts in 2014 (cruise ID 2014-615-FA). One spreadsheet...
Sediment core data from offshore Palos Verdes, California
The seven files included in this U.S. Geological Survey data release are data from a set of sediment cores acquired from the continental slope, offshore Los Angeles and the Palos Verdes Peninsula, adjacent to the Palos Verdes Fault. Gravity cores were collected by the USGS in 2009 (cruise ID S-I2-09-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=SI209SC), and vibracores were collected...
Science and Products
Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers
Turbidity currents dominate sediment transfer into the deep ocean, and can damage critical seabed infrastructure. It is commonly inferred that powerful turbidity currents are triggered by major external events, such as storms, river floods, or earthquakes. However, basic models for turbidity current triggering remain poorly tested, with few studies accurately recording precise flow...
Authors
Lewis Bailey, Michael Clare, Kurt J. Rosenberger, Matthieu J.B. Cartigny, Peter J. Talling, Charles K. Paull, Roberto Gwiazda, Daniel Parsons, Stephen Simmons, Jingping Xu, Ivan Haigh, Katherine L. Maier, Mary McGann, Eve M. Lundsten
Morphology, structure, and kinematics of the San Clemente and Catalina faults based on high-resolution marine geophysical data, southern California Inner Continental Borderland
Catalina Basin, located within the southern California Inner Continental Borderland (ICB), is traversed by two active submerged fault systems that are part of the broader North America-Pacific plate boundary: the San Clemente fault (along with a prominent splay, the Kimki fault) and the Catalina fault. Previous studies have suggested that the San Clemente fault (SCF) may be accommodating...
Authors
Maureen A. L. Walton, Daniel S. Brothers, James E. Conrad, Katherine L. Maier, Emily C. Roland, Jared W. Kluesner, Peter Dartnell
What determines the downstream evolution of turbidity currents?
Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far fewer measurements from turbidity currents, ensuring they are much more poorly understood. Turbidity currents differ fundamentally from rivers, as...
Authors
Catharina Heerema, Peter J. Talling, Matthieu J.B. Cartigny, Charles K. Paull, Lewis Bailey, Stephen Simmons, Daniel Parsons, Michael Clare, Roberto Gwiazda, Eve M. Lundsten, Krystle Anderson, Katherine L. Maier, Jingping Xu, Esther J. Sumner, Kurt J. Rosenberger, Jenny Gales, Mary McGann, Lionel Carter, Ed Pope
Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California
Submarine canyons provide globally important conduits for sediment and organic carbon transport into the deep-sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water column sampling devices, we address how fine-grained sediment and organic carbon are transported, mixed, fractionated, and buried along a submarine canyon...
Authors
Katherine L. Maier, Kurt J. Rosenberger, Charles K. Paull, Roberto Gwiazda, Jenny Gales, Thomas Lorenson, James P. Barry, Peter J. Talling, Mary McGann, Jingping Xu, Eve M. Lundsten, Krystle Anderson, Steven Litvin, Daniel Parsons, Michael Clare, Stephen Simmons, Esther J. Sumner, Matthieu J.B. Cartigny
Linking direct measurements of turbidity currents to submarine canyon-floor deposits
Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedimentary deposits on Earth. The only record available for most turbidity currents is the deposit they leave behind. Therefore, to understand...
Authors
Katherine L. Maier, Jenny Gales, Charles K. Paull, Kurt J. Rosenberger, Peter J. Talling, Stephen Simmons, Roberto Gwiazda, Mary McGann, Matthieu J.B. Cartigny, Eve M. Lundsten, Krystle Anderson, Michael Clare, Jingping Xu, Daniel Parsons, James P. Barry, Monica Wolfson-Schwher, Nora M. Nieminski, Esther J. Sumner
Powerful turbidity currents driven by dense basal layers
Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirely dilute or driven by a dense basal layer, remain equivocal. Here we present the most detailed direct observations yet from oceanic...
Authors
C. K. Paull, P. J. Talling, Katherine L. Maier, Daniel Parsons, Jingping Xu, D. W. Caress, R. Gwiazda, E. Lundsten, K. Anderson, James P. Barry, M. Chaffey, T. O'Reilly, Kurt J. Rosenberger, Jenny Gales, Brian Kieft, Mary McGann, Samantha E. Simmons, M. McCann, Esther J. Sumner, M. A. Clare, M. J. Cartigny
Controls on submarine canyon head evolution: Monterey Canyon, offshore central California
The Monterey submarine canyon, incised across the continental shelf in Monterey Bay, California, provides a record of the link between onshore tectonism, fluvial transport, and deep-marine deposition. High-resolution seismic-reflection imaging in Monterey Bay reveals an extensive paleocanyon unit buried below the seafloor of the continental shelf around Monterey and Soquel canyon heads...
Authors
Katherine L. Maier, Samuel Y. Johnson, Patrick E. Hart
The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution...
Authors
Daniel S. Brothers, Katherine L. Maier, Jared W. Kluesner, James E. Conrad, Jason Chaytor
Slope failure and mass transport processes along the Queen Charlotte Fault Zone, western British Columbia
Multibeam echosounder (MBES) images, 3.5 kHz seismic-reflection profiles and piston cores obtained along the southern Queen Charlotte Fault Zone are used to map and date mass-wasting events at this transform margin – a seismically active boundary that separates the Pacific Plate from the North American Plate. Whereas the upper continental slope adjacent to and east (upslope) of the fault...
Authors
H. G. Greene, J. Vaughn Barrie, Daniel S. Brothers, James E. Conrad, Kim Conway, Amy E. East, Randolph J. Enkin, Katherine L. Maier, Maureen A. L. Walton, K .M. M. Rohr
The tectonically controlled San Gabriel Channel–Lobe Transition Zone, Catalina Basin, Southern California Borderland
High-resolution geophysical data across the Catalina Basin, offshore southern California, USA, reveal a complex channel–lobe transition zone (CLTZ) and provide an opportunity to characterize an entire seafloor CLTZ in a tectonically active and confined-basin setting. The seafloor morphology, distribution of depositional and erosional features, and location of depocenters in the CLTZ are...
Authors
Katherine L. Maier, Emily C. Roland, Maureen A. L. Walton, James E. Conrad, Daniel S. Brothers, Peter Dartnell, Jared W. Kluesner
Seafloor fluid seeps on Kimki Ridge, offshore southern California: Links to active strike-slip faulting
The Kimki Ridge fluid seeps are located in western Catalina Basin about 60 km southwest of the southern California mainland and at a water depth of approximately 1100 m. Multichannel seismic reflection profiles collected by the U.S. Geological Survey (USGS) in 2014 show acoustic transparency within the Kimki Ridge, suggesting the possibility of fluid seeps and possible sub-seafloor fluid...
Authors
James E. Conrad, Nancy G. Prouty, Maureen A. L. Walton, Jared W. Kluesner, Katherine L. Maier, Mary McGann, Daniel S. Brothers, Emily C. Roland, Peter Dartnell
Unraveling the channel–lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico
Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows...
Authors
Cristian Carvajal, Charles K. Paull, David W. Caress, Andrea Fildani, Eve M. Lundsten, Krystle Anderson, Katherine L. Maier, Mary McGann, Roberto Gwiazda, Juan Carlos Herguera
Multichannel minisparker seismic-reflection data of field activity 2015-617-FA; Monterey Bay, offshore central California from 2015-02-23 to 2015-03-06
This data release contains approximately 190 line-kilometers of processed, high-resolution multichannel seismic-reflection (MCS) profiles that were collected aboard the R/V Snavely in 2015 on U.S. Geological Survey cruise 2015-617-FA in Monterey Bay, offshore central California. The majority of MCS profiles collected are oriented north-south across the Monterey Canyon head to address...
Sediment core data from the northern flank of Monterey Canyon, offshore California
The five files included in this U.S. Geological Survey data release are data from a set of sediment cores acquired from the continental slope, north of Monterey Canyon, offshore central California. Vibracores and push cores were collected with the Monterey Bay Aquarium Research Institutes remotely operated vehicle (ROV) Doc Ricketts in 2014 (cruise ID 2014-615-FA). One spreadsheet...
Sediment core data from offshore Palos Verdes, California
The seven files included in this U.S. Geological Survey data release are data from a set of sediment cores acquired from the continental slope, offshore Los Angeles and the Palos Verdes Peninsula, adjacent to the Palos Verdes Fault. Gravity cores were collected by the USGS in 2009 (cruise ID S-I2-09-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=SI209SC), and vibracores were collected...