Use of set blanks in reporting pesticide results at the U.S. Geological Survey National Water Quality Laboratory, 2001-15
Executive Summary
Background.—Pesticide results from the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) are used for water-quality assessments by many agencies and organizations. The USGS is committed to providing data of the highest possible quality to the consumers of its data. A cooperator’s inquiries about specific pesticide detections in water revealed potential laboratory contamination issues for some results. Consequently, the USGS conducted an extensive evaluation of potential low-level contamination related to processing or analysis of water-quality samples at NWQL for 21 pesticide compounds of interest to the cooperator. This is the most comprehensive study of NWQL pesticide quality-control (QC) results to date.
Purpose and scope.—The purpose of this study was to document protocols used by the NWQL to censor pesticide results and to determine the effects of laboratory contamination—as determined from detections in laboratory set blanks—on pesticide detections in groundwater and surface-water samples. More than 30,000 pesticide results from 113 selected batches of samples (2 percent or less of total batches) analyzed by the NWQL during the 15 years from 2001 to 2015 were reviewed. All laboratory results from the selected batches, including results from environmental (surface water and groundwater) and QC (set-blank, blind-blank, and blind-spike) samples, were evaluated. The study includes results for 21 pesticide compounds analyzed in groundwater and surface-water samples collected across the United States. Eleven pesticide compounds were analyzed by a gas chromatography/mass spectrometry method and 10 compounds by a liquid chromatography/mass spectrometry method.
Objectives and methods.—The objectives of this study were to (1) determine the characteristics of laboratory contamination over time, (2) compare distributions of pesticide results in set blanks with distributions in environmental samples, (3) evaluate the potential for false-positive and false-negative reporting of results, and (4) evaluate the effects of reevaluating historical pesticide results using 2017 compound identification protocols on detections of pesticides in groundwater and surface-water samples. The 113 instrument batches selected for this study contained detections of one or more of the 21 pesticide compounds in set blanks or were among those batches with the highest pesticide detection frequencies in set blanks. As a result, the dataset for this study was targeted toward pesticides and batches with laboratory contamination. The objectives were addressed by statistically comparing environmental and set-blank results; computing moving averages of set-blank detection frequencies to identify periods of episodic contamination; and using summary statistics, tabular summaries, and graphical approaches, such as time-series plots and cumulative distribution functions.
Results.—Objective 1: Laboratory contamination, as determined by pesticide detections in set blanks, was found in 13 percent of set-blank results from the 113 targeted batches included in this study (as compared to 6 percent of set-blank results from all 7,620 batches analyzed during the study period). It is estimated that 92 percent of the laboratory contamination during the study period was episodic, meaning that it occurred during discrete periods of time. All 21 of the targeted pesticide compounds had periods of episodic contamination, with most episodes ranging in duration from about 1 to 8 months. The remaining 8 percent of laboratory contamination was random or from a known source (deterministic).
Objective 2: For some compounds, graphs of cumulative distribution functions of the entire distributions of set-blank and environmental samples overlap, suggesting that there is no difference in the distributions of the two types of samples. However, time-series graphs show that detections in set blanks often occur at different times (sometimes separated by years) than detections in environmental samples, indicating clear differences in those distributions, and indicating the importance of evaluating the timing of detections in all sample types.
For most compounds detected in set-blank and environmental samples, detection frequencies were significantly greater in set blanks than in groundwater or surface-water samples (p
Citation Information
| Publication Year | 2019 |
|---|---|
| Title | Use of set blanks in reporting pesticide results at the U.S. Geological Survey National Water Quality Laboratory, 2001-15 |
| DOI | 10.3133/sir20195055 |
| Authors | Laura Medalie, Mark Sandstrom, Patricia Toccalino, William Foreman, Rhiannon ReVello, Laura Bexfield, Melissa Riskin |
| Publication Type | Report |
| Publication Subtype | USGS Numbered Series |
| Series Title | Scientific Investigations Report |
| Series Number | 2019-5055 |
| Index ID | sir20195055 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | California Water Science Center; National Water Quality Assessment Program; National Water Quality Laboratory; New England Water Science Center; New Jersey Water Science Center; New Mexico Water Science Center; Office of Water Quality; Branch of Analytical Serv (NWQL); WMA - Earth System Processes Division; WMA - Laboratory & Analytical Services Division |