Skip to main content
U.S. flag

An official website of the United States government

Landscapes

From boreal forests to coral reefs, the United States is home to a plethora of diverse ecosystems, each of which faces different challenges under climate change. CASC-supported scientists are examining how landscapes of all types are being affected by changing temperature and precipitation patterns and how managers can best facilitate climate adaptation. Browse our projects by landscape below. 

Filter Total Items: 330

Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse

Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation combined with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase in temperature due to climate change is expected to result in an...
Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse

Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse

Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation combined with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase in temperature due to climate change is expected to result in an additional
Learn More

SERAP: Modeling of Global and Land Use Change Impacts

The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers...
SERAP: Modeling of Global and Land Use Change Impacts

SERAP: Modeling of Global and Land Use Change Impacts

The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and
Learn More

SERAP: Decision Support for Stakeholders and Managers

The USGS and South Atlantic LCC worked with stakeholders and managers across the Southeast to identify and assess landscape-level strategies for conserving multiple species. These strategies incorporated predictions from downscaled climate models, sea level rise, and changes to aquatic and terrestrial habitats.
SERAP: Decision Support for Stakeholders and Managers

SERAP: Decision Support for Stakeholders and Managers

The USGS and South Atlantic LCC worked with stakeholders and managers across the Southeast to identify and assess landscape-level strategies for conserving multiple species. These strategies incorporated predictions from downscaled climate models, sea level rise, and changes to aquatic and terrestrial habitats.
Learn More

The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic

The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of...
The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic

The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic

The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their
Learn More

Impacts of Climate-Driven Changes in Spring Green-Up on Migratory Birds in Alaska

Migratory birds are important for recreation and tourism, contributing to a vibrant birdwatching industry in Alaska. Every spring, hundreds of birds migrate to their summer breeding grounds in Alaska and northern Canada. Their arrival is timed with the height of the spring green-up of plants, which provide the food necessary for birds to reproduce and raise their young. However, over the...
Impacts of Climate-Driven Changes in Spring Green-Up on Migratory Birds in Alaska

Impacts of Climate-Driven Changes in Spring Green-Up on Migratory Birds in Alaska

Migratory birds are important for recreation and tourism, contributing to a vibrant birdwatching industry in Alaska. Every spring, hundreds of birds migrate to their summer breeding grounds in Alaska and northern Canada. Their arrival is timed with the height of the spring green-up of plants, which provide the food necessary for birds to reproduce and raise their young. However, over the last
Learn More

Projected Land Use Change for the Conterminous United States (National Assessment)

This project produced land use change change forecasts for the United States at the national scale, based on the National Land Cover Dataset (NLCD) 2001. Both urban and agricultural expansion were modeled at 300-meter resolution at ten-year intervals from 2010 to 2050.
Projected Land Use Change for the Conterminous United States (National Assessment)

Projected Land Use Change for the Conterminous United States (National Assessment)

This project produced land use change change forecasts for the United States at the national scale, based on the National Land Cover Dataset (NLCD) 2001. Both urban and agricultural expansion were modeled at 300-meter resolution at ten-year intervals from 2010 to 2050.
Learn More
Was this page helpful?