An official website of the United States government
Here's how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Our objective is to develop a national-scale, geospatial database that is the authoritative source of the most important mines, mineral deposits, and mineral districts of the United States.
Our objective is to develop a national-scale, geospatial database that is the authoritative source of the most important mines, mineral deposits, and mineral districts of the United States.
The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
Metal Transport in Mineralized Mountain Watersheds
The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
The objective of this study is to characterize the regional impact of legacy mining in the context of framework geology for the Salmon Mountains in central Idaho. This objective is addressed through three interrelated tasks: 1) framework geology, 2) watershed biogeochemical processes, and 3) characterization of trace metals in colloids (fine particles suspended in water).
The objective of this study is to characterize the regional impact of legacy mining in the context of framework geology for the Salmon Mountains in central Idaho. This objective is addressed through three interrelated tasks: 1) framework geology, 2) watershed biogeochemical processes, and 3) characterization of trace metals in colloids (fine particles suspended in water).
The Silverton caldera complex in southwest Colorado hosts base and precious metals that have been mined since the late 1800s. Extensive mine workings, excellent bedrock exposures, and deeply incised drainages make this area a natural laboratory ideally suited for furthering our understanding of the mineral systems in a volcanic environment. In addition, state-of-the-art geophysical data processing...
A Shallow to Deep View Inside the Hydrothermally Altered and Mineralized Silverton Caldera Complex: New Geologic Insights Gained From Modern Geophysical Interpretations
The Silverton caldera complex in southwest Colorado hosts base and precious metals that have been mined since the late 1800s. Extensive mine workings, excellent bedrock exposures, and deeply incised drainages make this area a natural laboratory ideally suited for furthering our understanding of the mineral systems in a volcanic environment. In addition, state-of-the-art geophysical data processing...
The primary objectives of this one-year scoping project are to determine the feasibility of extracting byproduct mineral commodities, such as critical minerals, from mine tailings. We plan to analyze the existing data and reports from an active mine site on the composition of their mill tailings pile, and collect preliminary reconnaissance samples to identify appropriate analytical techniques that...
Critical Mineral Recovery Potential from Tailings and Other Mine Waste Streams
The primary objectives of this one-year scoping project are to determine the feasibility of extracting byproduct mineral commodities, such as critical minerals, from mine tailings. We plan to analyze the existing data and reports from an active mine site on the composition of their mill tailings pile, and collect preliminary reconnaissance samples to identify appropriate analytical techniques that...
The primary goal of this project is to ensure the availability of state-of-the-art mineralogical analyses and, when needed, development of new analytical methods that can be applied to topical studies in Energy and Minerals Mission Area, as well as the other mission areas.The project includes mineralogy by X-ray diffraction (XRD), qualitative and semi-quantitative x-ray fluorescence spectroscopy...
The primary goal of this project is to ensure the availability of state-of-the-art mineralogical analyses and, when needed, development of new analytical methods that can be applied to topical studies in Energy and Minerals Mission Area, as well as the other mission areas.The project includes mineralogy by X-ray diffraction (XRD), qualitative and semi-quantitative x-ray fluorescence spectroscopy...
The main goal of this project is to provide a science-based approach for screening legacy mine land (LML) sites for remediation and identifying watersheds where relatively low-cost restoration efforts may yield substantial improvements to stream water quality. We are combing analysis of multiple existing regional data coverages with focused field studies to develop a protocol that land managers...
Multi-scale Screening Techniques for Legacy Mine Land (LML) Sites Using Data Mining and Site-specific Studies in the Western U.S.
The main goal of this project is to provide a science-based approach for screening legacy mine land (LML) sites for remediation and identifying watersheds where relatively low-cost restoration efforts may yield substantial improvements to stream water quality. We are combing analysis of multiple existing regional data coverages with focused field studies to develop a protocol that land managers...
Funded by the USGS Energy Resource Program “Shark Tank” grant. The goal of this project is to develop a method to use remotely collected satellite and airborne data to ascertain the quantity and quality of waste at abandoned uranium mines to better estimate the resource potential, identify abandoned mines and explore potential applications to other energy resources. This is a collaborative effort...
Remote Sensing Techniques for Characterizing Energy Resources in Waste
Funded by the USGS Energy Resource Program “Shark Tank” grant. The goal of this project is to develop a method to use remotely collected satellite and airborne data to ascertain the quantity and quality of waste at abandoned uranium mines to better estimate the resource potential, identify abandoned mines and explore potential applications to other energy resources. This is a collaborative effort...
The study objective is to conduct an integrated, interdisciplinary study on source areas, biogeochemical transformations, and physical and biological pathways for trace metal transport in a tributary of the Snake River watershed, focusing on the Sugar Creek watershed. The historical Cinnabar mercury mine site is at the headwaters of Cinnabar Creek, a tributary to Sugar Creek. This integrated...
Trace Metal Mobility in the Yellow Pine Mining District, Idaho
The study objective is to conduct an integrated, interdisciplinary study on source areas, biogeochemical transformations, and physical and biological pathways for trace metal transport in a tributary of the Snake River watershed, focusing on the Sugar Creek watershed. The historical Cinnabar mercury mine site is at the headwaters of Cinnabar Creek, a tributary to Sugar Creek. This integrated...
USGS is conducting sampling, monitoring, and modeling in the Patagonia Mountains and nearby regions in Arizona to identify contaminant risk potential of legacy and proposed mine sites and to develop classification criteria for predicting vulnerabilities and targeted sources and sinks of metal contaminants.
USGS Response to Possible Metals Contamination from Legacy Mines in the Patagonia Mountains Region and Adjacent Areas, Southeast Arizona and a Template for Future Mineral Environmental Emergency Response
USGS is conducting sampling, monitoring, and modeling in the Patagonia Mountains and nearby regions in Arizona to identify contaminant risk potential of legacy and proposed mine sites and to develop classification criteria for predicting vulnerabilities and targeted sources and sinks of metal contaminants.
The project's primary objective is to evaluate the reducing capacity of an aquifer down-gradient of a roll-front ore zone to assess the mobility of uranium and other associated elements (e.g. arsenic, selenium, molybdenum, and sulfur). Assessing the reducing capacity of the aquifer requires characterization of the mineralogy, geochemistry, and microbiology and their variation across the aquifer.
Processes Controlling Groundwater Quality in Uranium In-Situ Recovery (ISR) Mining
The project's primary objective is to evaluate the reducing capacity of an aquifer down-gradient of a roll-front ore zone to assess the mobility of uranium and other associated elements (e.g. arsenic, selenium, molybdenum, and sulfur). Assessing the reducing capacity of the aquifer requires characterization of the mineralogy, geochemistry, and microbiology and their variation across the aquifer.
The USGS is using a set of advanced imaging and analysis tools to study the rocks within the eastern Adirondacks of upstate New York. The goal of these studies is to gain a better understanding of the geology and mineral resources in the area.
Mineville, Eastern Adirondacks – Geophysical and Geologic Studies
The USGS is using a set of advanced imaging and analysis tools to study the rocks within the eastern Adirondacks of upstate New York. The goal of these studies is to gain a better understanding of the geology and mineral resources in the area.