Anita Engelstad
Oceanographer at the USGS Pacific Coastal and Marine Science Center
Science and Products
Climate impacts to Arctic coasts
The Arctic region is warming faster than anywhere else in the nation. Understanding the rates and causes of coastal change in Alaska is needed to identify and mitigate hazards that might affect people and animals that call Alaska home.
Nearshore wave time-series along the coast of Alaska computed with a numerical wave model
Alaska's Arctic coast has some of the highest erosion rates in the world. Erosion in the Arctic is primarily driven by permafrost thaw and wave activity. The warming climate decreases sea ice coverage, resulting in an increase in wave energy. To overcome the lack of available observational wave data in the nearshore, waves were downscaled with a numerical wave model (SWAN) utilizing several model
Future coastal hazards along the U.S. Atlantic coast
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms for three States (Florida, Georgia, and Virginia) along the Atlantic coast of the United States. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available science and with enough resolution to support a suite of different plann
Future coastal hazards along the U.S. North and South Carolina coasts
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms along the North and South Carolina coast. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available, science and with enough resolution to support a suite of different planning horizons. The storm scenarios are derived with the
Hydrographic and sediment field data collected in the vicinity of Wainwright, Alaska, in 2009
This dataset consists of hydrographic, geomorphic, and sediment field measurements obtained during the ice-free summer of 2009 in the vicinity of Wainwright, Alaska. Time-series data were collected with a bottom-mounted instrument package and consist of wave statistics, vertical water flow velocity profiles, water temperatures, conductivity, and salinity concentrations. Data collected at distinct
Ocean wave time-series data simulated with a global-scale numerical wave model under the influence of historical and projected CMIP6 wind and sea ice fields (ver. 2.0, October 2024)
Hourly time-series of waves at the 20m, 50m, and 100m isobaths, along all U.S. open coasts for the historical (1979-2014) and projected (2020-2050) period: Those data (estimates of historical and long-term future conditions) were developed by running the National Oceanic and Atmospheric Administration's (NOAA) WaveWatch3 wave model forced with winds and sea ice extents from four separate high-reso
Wave model results of the central Beaufort Sea coast, Alaska
A three-level SWAN (version 41.31) nesting grid has been developed for the central Beaufort Sea coast to simulate waves over the hindcast period 1979 - 2019. The model includes the implementations of sea ice by Rogers (2019) and includes both 1) a dissipation source term and 2) a scaling of wind input source as functions by sea ice. The bathymetric dataset used for the model is the International
Historical shorelines and morphological metrics for barrier islands and spits along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019
A suite of morphological metrics were derived from existing shoreline and elevation datasets for barrier islands and spits located along the north-slope coast of Alaska between Cape Beaufort and the U.S.-Canadian border. This dataset includes barrier shorelines and polygons attributed with morphological metrics from five time periods: 1950s, 1980s, 2000s, 2010s, and 2020s.
Projections of multiple climate-related coastal hazards for the US Southeast Atlantic
Faced with accelerating sea level rise and changing ocean storm conditions, coastal communities require comprehensive assessments of climate-driven hazard impacts to inform adaptation measures. Previous studies have focused on flooding but rarely on other climate-related coastal hazards, such as subsidence, beach erosion and groundwater. Here, we project societal exposure to multiple hazards along
Authors
Patrick L. Barnard, Kevin M. Befus, Jeffrey J. Danielson, Anita C Engelstad, Li H. Erikson, Amy C. Foxgrover, Maya Kumari Hayden, Daniel J. Hoover, Tim Leijnse, Chris Massey, Robert T. McCall, Norberto Nadal-Caraballo, Kees Nederhoff, Andrea C. O'Neill, Kai Alexander Parker, Manoochehr Shirzaei, Leonard O. Ohenhen, Peter W Swarzenski, Jennifer Anne Thomas, Maarten van Ormondt, Sean Vitousek, Killian Vos, Nathan J. Wood, Jeanne M. Jones, Jamie Jones
Database and time series of nearshore waves along the Alaskan coast from the United States-Canada border to the Bering Sea
Alaska’s Arctic coast has some of the highest coastal erosion rates in the world, primarily driven by permafrost thaw and increasing wave energy. In the Arctic, a warming climate is driving sea ice cover to decrease in space and time. A lack of long-term observational wave data along Alaska’s coast challenges the ability of engineers, scientists, and planners to study and address threats and effec
Authors
Anita C. Engelstad, Li H. Erikson, Borja G. Reguero, Ann E. Gibbs, Kees Nederhoff
Numerical model characterization of sediment transport potentials pre- and post-construction of an artificial island in Foggy Island Bay, Alaska
The anticipated construction of the Liberty Development Island near Prudhoe Bay, Alaska, has created a need to understand how the island may influence sediment transport patterns and deposition on the nearby Boulder Patch ecosystem. This study uses a numerical model to characterize sediment transport pathways in Foggy Island Bay with and without the artificial island in place. We present the Delft
Authors
Cornelis M. Nederhoff, Li H. Erikson, Anita C Engelstad, Stuart Pearson
Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs
Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual t
Authors
Ann E. Gibbs, Li H. Erikson, Benjamin M. Jones, Bruce M. Richmond, Anita C Engelstad
Assessment of barrier island morphological change in northern Alaska
Arctic barriers islands are highly dynamic features influenced by a variety of oceanographic, geologic, and environmental factors. Many Alaskan barrier islands and spits serve as habitat and protection for native species, as well as shelter the coast from waves and storms that cause flooding and degradation of coastal villages. This study summarizes changes to barrier morphology in time and space
Authors
Anna I. Hamilton, Ann E. Gibbs, Li H. Erikson, Anita C. Engelstad
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Diminishing sea ice is impacting the wave field across the Arctic region. Recent observation- and model-based studies highlight the spatiotemporal influence of sea ice on offshore wave climatologies, but effects within the nearshore region are still poorly described. This study characterizes the wave climate in the central Beaufort Sea coast from 1979 to 2019 by utilizing a wave hindcast model tha
Authors
Cornelis M. Nederhoff, Li H. Erikson, Anita C Engelstad, Peter A. Bieniek, Jeremy L. Kasper
The transition of benthic nutrient sources after planned levee breaches adjacent to upper Klamath and Agency Lakes, Oregon
Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatia
Authors
James S. Kuwabara, Brent R. Topping, James L. Carter, Francis Parchaso, Jason M. Cameron, Jessica R. Asbill, Steven V. Fend, John H. Duff, Anita C. Engelstad
Benthic flux of nutrients and trace metals in the northern component of San Francisco Bay, California
Two sets of sampling trips were coordinated in late summer 2008 (weeks of July 8 and August 6) to sample the interstitial and overlying bottom waters at 10 shallow locations (9 sites
Authors
James S. Kuwabara, Brent R. Topping, Francis Parcheso, Anita C. Engelstad, Valerie E. Greene
Science and Products
Climate impacts to Arctic coasts
The Arctic region is warming faster than anywhere else in the nation. Understanding the rates and causes of coastal change in Alaska is needed to identify and mitigate hazards that might affect people and animals that call Alaska home.
Nearshore wave time-series along the coast of Alaska computed with a numerical wave model
Alaska's Arctic coast has some of the highest erosion rates in the world. Erosion in the Arctic is primarily driven by permafrost thaw and wave activity. The warming climate decreases sea ice coverage, resulting in an increase in wave energy. To overcome the lack of available observational wave data in the nearshore, waves were downscaled with a numerical wave model (SWAN) utilizing several model
Future coastal hazards along the U.S. Atlantic coast
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms for three States (Florida, Georgia, and Virginia) along the Atlantic coast of the United States. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available science and with enough resolution to support a suite of different plann
Future coastal hazards along the U.S. North and South Carolina coasts
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms along the North and South Carolina coast. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available, science and with enough resolution to support a suite of different planning horizons. The storm scenarios are derived with the
Hydrographic and sediment field data collected in the vicinity of Wainwright, Alaska, in 2009
This dataset consists of hydrographic, geomorphic, and sediment field measurements obtained during the ice-free summer of 2009 in the vicinity of Wainwright, Alaska. Time-series data were collected with a bottom-mounted instrument package and consist of wave statistics, vertical water flow velocity profiles, water temperatures, conductivity, and salinity concentrations. Data collected at distinct
Ocean wave time-series data simulated with a global-scale numerical wave model under the influence of historical and projected CMIP6 wind and sea ice fields (ver. 2.0, October 2024)
Hourly time-series of waves at the 20m, 50m, and 100m isobaths, along all U.S. open coasts for the historical (1979-2014) and projected (2020-2050) period: Those data (estimates of historical and long-term future conditions) were developed by running the National Oceanic and Atmospheric Administration's (NOAA) WaveWatch3 wave model forced with winds and sea ice extents from four separate high-reso
Wave model results of the central Beaufort Sea coast, Alaska
A three-level SWAN (version 41.31) nesting grid has been developed for the central Beaufort Sea coast to simulate waves over the hindcast period 1979 - 2019. The model includes the implementations of sea ice by Rogers (2019) and includes both 1) a dissipation source term and 2) a scaling of wind input source as functions by sea ice. The bathymetric dataset used for the model is the International
Historical shorelines and morphological metrics for barrier islands and spits along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019
A suite of morphological metrics were derived from existing shoreline and elevation datasets for barrier islands and spits located along the north-slope coast of Alaska between Cape Beaufort and the U.S.-Canadian border. This dataset includes barrier shorelines and polygons attributed with morphological metrics from five time periods: 1950s, 1980s, 2000s, 2010s, and 2020s.
Projections of multiple climate-related coastal hazards for the US Southeast Atlantic
Faced with accelerating sea level rise and changing ocean storm conditions, coastal communities require comprehensive assessments of climate-driven hazard impacts to inform adaptation measures. Previous studies have focused on flooding but rarely on other climate-related coastal hazards, such as subsidence, beach erosion and groundwater. Here, we project societal exposure to multiple hazards along
Authors
Patrick L. Barnard, Kevin M. Befus, Jeffrey J. Danielson, Anita C Engelstad, Li H. Erikson, Amy C. Foxgrover, Maya Kumari Hayden, Daniel J. Hoover, Tim Leijnse, Chris Massey, Robert T. McCall, Norberto Nadal-Caraballo, Kees Nederhoff, Andrea C. O'Neill, Kai Alexander Parker, Manoochehr Shirzaei, Leonard O. Ohenhen, Peter W Swarzenski, Jennifer Anne Thomas, Maarten van Ormondt, Sean Vitousek, Killian Vos, Nathan J. Wood, Jeanne M. Jones, Jamie Jones
Database and time series of nearshore waves along the Alaskan coast from the United States-Canada border to the Bering Sea
Alaska’s Arctic coast has some of the highest coastal erosion rates in the world, primarily driven by permafrost thaw and increasing wave energy. In the Arctic, a warming climate is driving sea ice cover to decrease in space and time. A lack of long-term observational wave data along Alaska’s coast challenges the ability of engineers, scientists, and planners to study and address threats and effec
Authors
Anita C. Engelstad, Li H. Erikson, Borja G. Reguero, Ann E. Gibbs, Kees Nederhoff
Numerical model characterization of sediment transport potentials pre- and post-construction of an artificial island in Foggy Island Bay, Alaska
The anticipated construction of the Liberty Development Island near Prudhoe Bay, Alaska, has created a need to understand how the island may influence sediment transport patterns and deposition on the nearby Boulder Patch ecosystem. This study uses a numerical model to characterize sediment transport pathways in Foggy Island Bay with and without the artificial island in place. We present the Delft
Authors
Cornelis M. Nederhoff, Li H. Erikson, Anita C Engelstad, Stuart Pearson
Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs
Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual t
Authors
Ann E. Gibbs, Li H. Erikson, Benjamin M. Jones, Bruce M. Richmond, Anita C Engelstad
Assessment of barrier island morphological change in northern Alaska
Arctic barriers islands are highly dynamic features influenced by a variety of oceanographic, geologic, and environmental factors. Many Alaskan barrier islands and spits serve as habitat and protection for native species, as well as shelter the coast from waves and storms that cause flooding and degradation of coastal villages. This study summarizes changes to barrier morphology in time and space
Authors
Anna I. Hamilton, Ann E. Gibbs, Li H. Erikson, Anita C. Engelstad
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Diminishing sea ice is impacting the wave field across the Arctic region. Recent observation- and model-based studies highlight the spatiotemporal influence of sea ice on offshore wave climatologies, but effects within the nearshore region are still poorly described. This study characterizes the wave climate in the central Beaufort Sea coast from 1979 to 2019 by utilizing a wave hindcast model tha
Authors
Cornelis M. Nederhoff, Li H. Erikson, Anita C Engelstad, Peter A. Bieniek, Jeremy L. Kasper
The transition of benthic nutrient sources after planned levee breaches adjacent to upper Klamath and Agency Lakes, Oregon
Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatia
Authors
James S. Kuwabara, Brent R. Topping, James L. Carter, Francis Parchaso, Jason M. Cameron, Jessica R. Asbill, Steven V. Fend, John H. Duff, Anita C. Engelstad
Benthic flux of nutrients and trace metals in the northern component of San Francisco Bay, California
Two sets of sampling trips were coordinated in late summer 2008 (weeks of July 8 and August 6) to sample the interstitial and overlying bottom waters at 10 shallow locations (9 sites
Authors
James S. Kuwabara, Brent R. Topping, Francis Parcheso, Anita C. Engelstad, Valerie E. Greene