David George

Biography

Position

Research Mathematician, USGS Cascades Volcano Observatory

Mendenhall Postdoctoral Fellow

 

 

Previous Positions:

Postdoctoral Fellow, Department of Applied Mathematics, University of Washington, 2007-2008

Postdoctoral Fellow, Department of Mathematics, University of Utah, 2006-2007.

 

Education:

Ph.D., Applied Mathematics, University of Washington, Seattle 2006.

M.S., Applied Mathematics, University of Washington, Seattle 2004.

B.S. , B.S. & B.A., Physics, Biology, Anthropology, University of California at Santa Barbara, 1997.

 

 

PUBLICATIONS

A Two-Phase Debris-Flow Model that Includes Coupled Evolution of Volume Fractions, Granular Dilatency, and Pore-Fluid Pressure, D. L. George and R. M. Iverson, Italian Journal of Engineering Geology and Environment, In press, 2011.

The GeoClaw Software for Depth-Averaged Flows with Adaptive Refinement, M. J. Berger, D. L. George, R. J. LeVeque and K.T. Mandli, Advances in Water Resources, In press, 34: 1195:1206, 2011.

Tsunami Modeling with Adaptively Refined Finite Volume Methods. M. J. Berger, D. L. George and R. J. LeVeque. Acta Numerica, 20 (2011), pp. 211-289. Arieh Iserles, ed.

Adaptive Finite Volume Methods with Well-Balanced Riemann Solvers for Modeling Floods in Rugged Terrain: application to the Malpasset dam-break flood (France, 1959). D. L. George, Int. J. Numer. Methods Fluids, 66(8):1000-1018, July 2011. 

Augmented Riemann Solvers for the Shallow Water Equations over Variable Topography with Steady States and Inundation. D. L. George. J. Comp. Phys. , 227(6):3089-3113, March 2008.

High Resolution Methods and Adaptive Refinement for Tsunami Propagation and Inundation. D. L. George and R. J. LeVeque. Hyperbolic Problems: Theory, Numerics, Applications., pages 541-549. Springer, 2008. Proc. 11'th Intl. Conf. on Hyperbolic Problems, HYP06, Lyon, France, July 2006.

High-Resolution Finite Volume Methods for the Shallow Water Equations with Bathymetry and Dry-States. R.J. LeVeque and D.L. George. In volume 10 in Advanced Numerical Models for Simulating Tsunami Waves and Runup, P. L. Liu, C. Synolakis, and H. Yeh, editors., Advances in Coastal and Ocean Engineering, , pages 43-73. World Scientific 2008.

Finite Volume Methods and Adaptive Refinement for Global Tsunami Propagation and Indundation. D.L. George and R.J. LeVeque. Science of Tsunami Hazards, Vol. 24. No. 5, 319-328, 2006.