Dave Edmunds is an ecologist at the Fort Collins Science Center, whose research focuses on greater sage-grouse population dynamics in Wyoming and across the western United States.
Dave Edmunds has been an Ecologist in the Ecosystem and Landscape Dynamics Research Branch at the Fort Collins Science Center since August 2020. Prior to coming to the US Geological Survey (USGS), Dave was a Research Scientist in the Natural Resource Ecology Laboratory (NREL) at Colorado State University (CSU) while working in cooperation with the USGS in Dr. Cameron Aldridge’s lab (2014-2020). Dave maintains his connection with CSU as an Affiliate Research Scientist in NREL.
His career began at Virginia Tech, where he earned a B.S. in Wildlife Sciences in 2002. After graduation, he moved to Wyoming where he worked as a field technician for two years assisting on research projects that focused on black and grizzly bears, mountain lions, Greater sage-grouse, and white-tailed deer. Dave obtained his M.S. and Ph.D. degrees from the University of Wyoming in the Department of Veterinary Sciences in 2008 and 2013, respectively. Both degrees were under the guidance of Dr. Todd Cornish and focused on the ecology and epidemiology of chronic wasting disease in a high prevalence white-tailed deer population in southeast Wyoming.
His research interests include population dynamics, population viability analyses, wildlife disease ecology, and movement ecology. His current research is varied, but his main focus is on Greater sage-grouse population dynamics in Wyoming and across the western United States.
Science and Products
Greater Sage-Grouse and Mule Deer Population Viability Analysis Across Scales
Hierarchical Sage-Grouse Population Assessment Tool: Building a Foundation for True Adaptive Management
America's Wild Horses and Burros—Research to Support Management
Multi-scale Statewide Wyoming Greater Sage-grouse Trends Determined by Population Viability Analysis
Sagebrush (Artemisia spp.) scale of effect for Greater Sage-grouse (Centrocercus urophasianus) population trends in southwest Wyoming, USA 2003-2019
Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (1960-2021)
U.S. range-wide spatial prediction layers of lek persistence probabilities for greater sage-grouse
Hierarchically nested and biologically relevant range-wide monitoring frameworks for greater sage-grouse, western United States
Greater sage-grouse population structure and connectivity data to inform the development of hierarchical population units (western United States)
Spatial layers generated by the Prioritizing Restoration of Sagebrush Ecosystems Tool (PReSET) applied in Southern Wyoming
Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim
Range-wide population trend analysis for greater sage-grouse (Centrocercus urophasianus)—Updated 1960–2021
Spatial scale selection for informing species conservation in a changing landscape
Defining biologically relevant and hierarchically nested population units to inform wildlife management
Defining fine-scaled population structure among continuously distributed populations
U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2018 annual report
Prioritizing restoration areas to conserve multiple sagebrush-associated wildlife species
Synthesizing and analyzing long-term monitoring data: A greater sage-grouse case study
Range-wide greater sage-grouse hierarchical monitoring framework—Implications for defining population boundaries, trend estimation, and a targeted annual warning system
Prioritizing landscapes for grassland bird conservation with hierarchical community models
Designing multi-scale hierarchical monitoring frameworks for wildlife to support management: A sage-grouse case study
Erratum - Greater sage-grouse population trends across Wyoming.
Greater sage-grouse population trends across Wyoming
popcluster: hierarchical population monitoring frameworks, Version 2.0.0
Spatial scale selection for greater sage-grouse population trends, Version 1.0.0
grsg_lekdb: Compiling and standardizing greater sage-grouse lek databases, version 1.1.0
lcp_centrality: Defining least-cost paths and graph theory centrality measures
grsg_lekdb: Compiling and standardizing greater sage-grouse lek databases
popcluster: Developing Hierarchical Population Monitoring Frameworks for mobile species with high site fidelity
Science and Products
- Science
Greater Sage-Grouse and Mule Deer Population Viability Analysis Across Scales
USGS and Colorado State University scientists will use data about sage-grouse and mule deer population data across Wyoming to evaluate the effectiveness of disturbance thresholds and investigate the efficacy of other disturbance metrics.Hierarchical Sage-Grouse Population Assessment Tool: Building a Foundation for True Adaptive Management
USGS scientists and colleagues have designed a hierarchical monitoring framework for greater sage-grouse in Nevada, Wyoming, and northeastern California that will provide land managers with a monitoring and detection system to identify sage-grouse breeding locations (known as leks), clusters of leks, and populations where intervention may be necessary to sustain populations and to evaluate...America's Wild Horses and Burros—Research to Support Management
The wild horses that roam the west are feral descendents of domestic animals that either escaped from or were intentionally released by early European explorers and later settlers. As a result of both origin and contemporary management, the Spanish or Iberian influence remains strong in some wild horse populations (e.g., the Kiger, Pryor Mountain, and Sulfur Mountain herds). In other populations...Multi-scale Statewide Wyoming Greater Sage-grouse Trends Determined by Population Viability Analysis
USGS scientists and partners investigated sage-grouse population trends in Wyoming and at multiple spatial scales. - Data
Sagebrush (Artemisia spp.) scale of effect for Greater Sage-grouse (Centrocercus urophasianus) population trends in southwest Wyoming, USA 2003-2019
The distance within which populations respond to features in a landscape (scale of effect) can indicate how disturbance and management may affect wildlife. Using annual counts of male Greater Sage-grouse (Centrocercus urophasianus) attending 584 leks in southwest Wyoming (2003-2019) and estimates of sagebrush cover from the Rangeland Condition Monitoring Assessment and Projection (RCMAP), we usedTrends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (1960-2021)
Greater sage-grouse (Centrocercus urophasianus) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. These data represent an updated population trend analysis and Targeted Annual Warning System (TAWS) for state and federal land and wildlife managers to use best-available scienceU.S. range-wide spatial prediction layers of lek persistence probabilities for greater sage-grouse
This dataset contains two predictive lek (breeding site) persistence raster layers covering the U.S. greater sage-grouse distribution. In the United States, locations where males display and breed with females (i.e., leks) are often monitored annually by state wildlife agencies, providing valuable information on the persistence of birds in the surrounding areas. A U.S. range-wide lek database wasHierarchically nested and biologically relevant range-wide monitoring frameworks for greater sage-grouse, western United States
We produced 13 hierarchically nested cluster levels that reflect the results from developing a hierarchical monitoring framework for greater sage-grouse across the western United States. Polygons (clusters) within each cluster level group a population of sage-grouse leks (sage-grouse breeding grounds) and each level increasingly groups lek clusters from previous levels. We developed the hierarchicGreater sage-grouse population structure and connectivity data to inform the development of hierarchical population units (western United States)
We present five hierarchical demarcations of greater sage-grouse population structure, representing the spatial structure of populations which can exist due to differences in dispersal abilities, landscape configurations, and mating behavior. These demarcations represent Thiessen polygons of graph constructs (least-cost path [LCP] minimum spanning trees [MST; LCP-MST]) representing greater sage-grSpatial layers generated by the Prioritizing Restoration of Sagebrush Ecosystems Tool (PReSET) applied in Southern Wyoming
All data layers included in this data release were created using the Prioritizing Restoration of Sagebrush Ecosystems Tool (PReSET) tool, which relies on spatial inputs on species distributions and likelihood of restoration success to select parcels for sagebrush restoration. The PReSET is a workflow that relies on the prioritizr package in program R to identify parcels for effective and meaningfuHierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies - Publications
Filter Total Items: 15
Range-wide population trend analysis for greater sage-grouse (Centrocercus urophasianus)—Updated 1960–2021
Greater sage-grouse (Centrocercus urophasianus) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. This updated population trend analysis provides state and federal land and wildlife managers with best-available science to help guide current management and conservation plans aiSpatial scale selection for informing species conservation in a changing landscape
Identifying the relevant spatial scale at which species respond to features in a landscape (scale of effect) is a pressing research need as managers work to reduce biodiversity loss amid a variety of environmental challenges. Until recently, researchers often evaluated a subset of potential scales of effect inferred from previous studies in other locations, often based on different biological respDefining biologically relevant and hierarchically nested population units to inform wildlife management
Wildlife populations are increasingly affected by natural and anthropogenic changes that negatively alter biotic and abiotic processes at multiple spatiotemporal scales and therefore require increased wildlife management and conservation efforts. However, wildlife management boundaries frequently lack biological context and mechanisms to assess demographic data across the multiple spatiotemporal sDefining fine-scaled population structure among continuously distributed populations
Understanding wildlife population structure and connectivity can help managers identify conservation strategies, as structure can facilitate the study of population changes and habitat connectivity can provide information on dispersal and biodiversity. To facilitate the use of wildlife monitoring data for improved adaptive management, we developed a novel approach to define hierarchical tiers (mulU.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2018 annual report
The Wyoming Landscape Conservation Initiative (WLCI) was established in 2007 as a collaborative interagency partnership to develop and implement science-based conservation actions. During the past 11 years, partners from U.S. Geological Survey (USGS), State and Federal land management agencies, universities, and the public have collaborated to implement a long-term (more than 10 years) science-basPrioritizing restoration areas to conserve multiple sagebrush-associated wildlife species
Strategic restoration of altered habitat is one method for addressing worldwide biodiversity declines. Within the sagebrush steppe of western North America, habitat degradation has been linked to declines in many species, making restoration a priority for managers; however, limited funding, spatiotemporal variation in restoration success, and the need to manage for diverse wildlife species make deSynthesizing and analyzing long-term monitoring data: A greater sage-grouse case study
Long-term monitoring of natural resources is imperative for increasing the understanding of ecosystem processes, services, and how to manage those ecosystems to maintain or improve function. Challenges with using these data may occur because methods of monitoring changed over time, multiple organizations collect and manage data differently, and monetary resources fluctuate, affecting many aspectsRange-wide greater sage-grouse hierarchical monitoring framework—Implications for defining population boundaries, trend estimation, and a targeted annual warning system
Incorporating spatial and temporal scales into greater sage-grouse (Centrocercus urophasianus) population monitoring strategies is challenging and rarely implemented. Sage-grouse populations experience fluctuations in abundance that lead to temporal oscillations, making trend estimation difficult. Accounting for stochasticity is critical to reliably estimate population trends and investigate variaPrioritizing landscapes for grassland bird conservation with hierarchical community models
ContextGiven widespread population declines of birds breeding in North American grasslands, management that sustains wildlife while supporting rancher livelihoods is needed. However, management effects vary across landscapes, and identifying areas with the greatest potential bird response to conservation is a pressing research need.ObjectivesWe developed a hierarchical modeling approach to study gDesigning multi-scale hierarchical monitoring frameworks for wildlife to support management: A sage-grouse case study
Population monitoring is integral to the conservation and management of wildlife; yet, analyses of population demographic data rarely consider processes occurring across spatial scales, potentially limiting the effectiveness of adaptive management. Therefore, we developed a method to identify hierarchical levels of organization (i.e., populations) to define multiple spatial scales, specifically inErratum - Greater sage-grouse population trends across Wyoming.
No abstract available.Greater sage-grouse population trends across Wyoming
The scale at which analyses are performed can have an effect on model results and often one scale does not accurately describe the ecological phenomena of interest (e.g., population trends) for wide-ranging species: yet, most ecological studies are performed at a single, arbitrary scale. To best determine local and regional trends for greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA - Software
popcluster: hierarchical population monitoring frameworks, Version 2.0.0
We developed a method to construct hierarchically nested and biologically relevant groupings of similar habitats associated with field surveys while considering structure/connectedness (movements between habitats). This approach can support mobile species using high fidelity sites where monitoring during surveys occurs, such as birthing grounds, breeding grounds, or stopovers/seasonal habitats forSpatial scale selection for greater sage-grouse population trends, Version 1.0.0
The distance within which populations respond to features in a landscape (scale of effect) can indicate how disturbance and management may affect wildlife. Using annual counts of male greater sage-grouse (Centrocercus urophasianus) attending 584 leks in southwest Wyoming (2003-2019) and estimates of sagebrush (Artemisia spp.) cover from a remote sensing product (Rigge et al., 2021; Monroe et al.,grsg_lekdb: Compiling and standardizing greater sage-grouse lek databases, version 1.1.0
Greater sage-grouse (Centrocercus urophasianus) are landscape-scale sagebrush obligate species and an important gamebird and iconic species of the western United States. They occupy the sagebrush biome in western North America, extending east of the Sierra Nevada/Cascade Mountain ranges to the western regions of the Great Plains of the United States. Sage-grouse are one of the most closely monitorlcp_centrality: Defining least-cost paths and graph theory centrality measures
We present software that creates least-cost path spanning trees, a least-cost path minimum spanning tree, and graph theory centrality measures. The software was developed to support identification of population structures--specifically, greater sage-grouse (Centrocercus urophasianus), but also support other species or graph theory applications where least-cost paths are desired. We used habitat pagrsg_lekdb: Compiling and standardizing greater sage-grouse lek databases
Greater sage-grouse (Centrocercus urophasianus) are landscape-scale sagebrush obligate species and an important gamebird and iconic species of the western United States. They occupy the sagebrush biome in western North America, extending east of the Sierra Nevada/Cascade Mountain ranges to the western regions of the Great Plains of the United States. Sage-grouse are one of the most closely monitorpopcluster: Developing Hierarchical Population Monitoring Frameworks for mobile species with high site fidelity
The software "popcluster" constructs hierarchically nested groupings of similar habitats associated with field surveys while considering biological structure/connectedness (movements between habitats). This approach can support mobile species with high site fidelity where monitoring during surveys occurs on birthing grounds, breeding grounds, or stopovers/seasonal habitat for migratory s - News