Julia L Heslin
Julia Heslin is a Geographer with the Woods Hole Coastal and Marine Science Center Coastal Change Group.
Science and Products
Digital Shoreline Analysis System (DSAS)
Software for calculating positional boundary change over time The Digital Shoreline Analysis System (DSAS) version 6 is a standalone application that calculates shoreline or boundary change over time. The GIS of a user’s choice is used to prepare the data for DSAS. Like previous versions, DSAS v.6 enables a user to calculate rate-of-change statistics from multiple historical shoreline positions...
Coastal Change Likelihood
The U.S. Geological Survey, in partnership with the National Park Service through the Natural Resource Preservation Program, developed the Coastal Change Likelihood (CCL) assessment to determine the future likelihood of coastal change along U.S. coastlines in the next decade. The Northeast United States, from Maine to Virginia, was selected for a proof-of-concept pilot study.
Coastal Change Hazards
Natural processes such as waves, tides, and weather, continually change coastal landscapes. The integrity of coastal homes, businesses, and infrastructure can be threatened by hazards associated with event-driven changes, such as extreme storms and their impacts on beach and dune erosion, or longer-term, cumulative changes associated with coastal and marine processes, such as sea-level rise...
By
Natural Hazards Mission Area, Coastal and Marine Hazards and Resources Program, Pacific Coastal and Marine Science Center, St. Petersburg Coastal and Marine Science Center, Woods Hole Coastal and Marine Science Center, Supplemental Appropriations for Disaster Recovery Activities, Hurricanes, USGS Science in Long Island Sound and its Watershed
Coastal landscape response to sea-level change for the northeastern United States Coastal landscape response to sea-level change for the northeastern United States
This data release presents an update to the Coastal Response Likelihood (CRL) model (Lentz and others 2015); a spatially explicit, probabilistic model that evaluates coastal response for the Northeastern U.S. under various sea-level scenarios. The model considers the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Updated...
Satellite-derived shorelines from CoastSeg in multiple U.S. locations (1984-2023) Satellite-derived shorelines from CoastSeg in multiple U.S. locations (1984-2023)
This dataset contains shoreline positions derived from available satellite imagery for multiple locations (Barter Island, Alaska; Elwha, Washington; Cape Cod, Massachusetts; Madeira Beach, Florida; and Rincon, Puerto Rico) across the United States for the time period 1984 to 2023, to support ongoing remote-sensing development and validation efforts.
Seabeach amaranth presence-absence and barrier island geomorphology metrics as relates to shorebird habitat for Assateague Island National Seashore — 2008, 2010, and 2014 Seabeach amaranth presence-absence and barrier island geomorphology metrics as relates to shorebird habitat for Assateague Island National Seashore — 2008, 2010, and 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address...
Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the Digital Shoreline Analysis system version 5.1 (ver. 2.0, March 2023) Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the Digital Shoreline Analysis system version 5.1 (ver. 2.0, March 2023)
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates...
A GIS Compilation of Vector Shorelines and Shoreline Classification for Puerto Rico from 1970 and 2010 A GIS Compilation of Vector Shorelines and Shoreline Classification for Puerto Rico from 1970 and 2010
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is...
A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018 A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software to compute their rates of change. Keeping a...
Historical Shorelines for Puerto Rico from 1901 to 1987 Historical Shorelines for Puerto Rico from 1901 to 1987
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photograph or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software (v5.1) to compute their rates of change...
Comparisons of shoreline positions from satellite-derived and traditional field- and remote-sensing techniques Comparisons of shoreline positions from satellite-derived and traditional field- and remote-sensing techniques
Satellite-derived shorelines (SDS) have the potential to help researchers answer critical coastal science questions and support work to predict coastal change by filling in the spatial and temporal gaps present in current field-based and remote-sensing data collection methods. The U.S. Geological Survey conducted comparison analyses of traditionally sourced shorelines and SDS in diverse...
Authors
Andrea C. O'Neill, Sharon Batiste, Daniel Buscombe, Joseph Burgess, Kara S. Doran, Ann Gibbs, Rachel Henderson, Julia Heslin, Catherine Janda, Mark Lundine, Joseph Terrano, Jonathan Warrick, Kathryn Weber
Assessing decadal-scale coastal change likelihood to define the accuracy and application of scientific information Assessing decadal-scale coastal change likelihood to define the accuracy and application of scientific information
Defining the accuracy and uncertainties of scientific data products is critical to the usability and trustworthiness of scientific information for environmental management and conservation purposes, such as coastal resource prioritization, design, adaptation, and mitigation. The U.S. Geological Survey has a new decadal-scale coastal change assessment product that synthesizes nearly two...
Authors
Elizabeth Pendleton, Erika Lentz, Rachel Henderson, Julia Heslin, Marie Kathleen Bartlett, Travis Sterne
National shoreline change—Summary statistics for vector shorelines from the early 1900s to the 2010s for Puerto Rico National shoreline change—Summary statistics for vector shorelines from the early 1900s to the 2010s for Puerto Rico
The U.S. Geological Survey (USGS) maintains a database of historical shoreline positions for the United States coasts derived from historical sources, such as aerial photographs or topographic surveys, and contemporary sources, such as modern orthophotography, light detection and ranging (lidar) point clouds, and digital elevation models. These shorelines are compiled within a geographic
Authors
Rachel Henderson, Julia Heslin, Emily Himmelstoss, Maritza Barreto-Orta
Science and Products
Digital Shoreline Analysis System (DSAS)
Software for calculating positional boundary change over time The Digital Shoreline Analysis System (DSAS) version 6 is a standalone application that calculates shoreline or boundary change over time. The GIS of a user’s choice is used to prepare the data for DSAS. Like previous versions, DSAS v.6 enables a user to calculate rate-of-change statistics from multiple historical shoreline positions...
Coastal Change Likelihood
The U.S. Geological Survey, in partnership with the National Park Service through the Natural Resource Preservation Program, developed the Coastal Change Likelihood (CCL) assessment to determine the future likelihood of coastal change along U.S. coastlines in the next decade. The Northeast United States, from Maine to Virginia, was selected for a proof-of-concept pilot study.
Coastal Change Hazards
Natural processes such as waves, tides, and weather, continually change coastal landscapes. The integrity of coastal homes, businesses, and infrastructure can be threatened by hazards associated with event-driven changes, such as extreme storms and their impacts on beach and dune erosion, or longer-term, cumulative changes associated with coastal and marine processes, such as sea-level rise...
By
Natural Hazards Mission Area, Coastal and Marine Hazards and Resources Program, Pacific Coastal and Marine Science Center, St. Petersburg Coastal and Marine Science Center, Woods Hole Coastal and Marine Science Center, Supplemental Appropriations for Disaster Recovery Activities, Hurricanes, USGS Science in Long Island Sound and its Watershed
Coastal landscape response to sea-level change for the northeastern United States Coastal landscape response to sea-level change for the northeastern United States
This data release presents an update to the Coastal Response Likelihood (CRL) model (Lentz and others 2015); a spatially explicit, probabilistic model that evaluates coastal response for the Northeastern U.S. under various sea-level scenarios. The model considers the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Updated...
Satellite-derived shorelines from CoastSeg in multiple U.S. locations (1984-2023) Satellite-derived shorelines from CoastSeg in multiple U.S. locations (1984-2023)
This dataset contains shoreline positions derived from available satellite imagery for multiple locations (Barter Island, Alaska; Elwha, Washington; Cape Cod, Massachusetts; Madeira Beach, Florida; and Rincon, Puerto Rico) across the United States for the time period 1984 to 2023, to support ongoing remote-sensing development and validation efforts.
Seabeach amaranth presence-absence and barrier island geomorphology metrics as relates to shorebird habitat for Assateague Island National Seashore — 2008, 2010, and 2014 Seabeach amaranth presence-absence and barrier island geomorphology metrics as relates to shorebird habitat for Assateague Island National Seashore — 2008, 2010, and 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address...
Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the Digital Shoreline Analysis system version 5.1 (ver. 2.0, March 2023) Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the Digital Shoreline Analysis system version 5.1 (ver. 2.0, March 2023)
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates...
A GIS Compilation of Vector Shorelines and Shoreline Classification for Puerto Rico from 1970 and 2010 A GIS Compilation of Vector Shorelines and Shoreline Classification for Puerto Rico from 1970 and 2010
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is...
A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018 A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software to compute their rates of change. Keeping a...
Historical Shorelines for Puerto Rico from 1901 to 1987 Historical Shorelines for Puerto Rico from 1901 to 1987
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photograph or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software (v5.1) to compute their rates of change...
Comparisons of shoreline positions from satellite-derived and traditional field- and remote-sensing techniques Comparisons of shoreline positions from satellite-derived and traditional field- and remote-sensing techniques
Satellite-derived shorelines (SDS) have the potential to help researchers answer critical coastal science questions and support work to predict coastal change by filling in the spatial and temporal gaps present in current field-based and remote-sensing data collection methods. The U.S. Geological Survey conducted comparison analyses of traditionally sourced shorelines and SDS in diverse...
Authors
Andrea C. O'Neill, Sharon Batiste, Daniel Buscombe, Joseph Burgess, Kara S. Doran, Ann Gibbs, Rachel Henderson, Julia Heslin, Catherine Janda, Mark Lundine, Joseph Terrano, Jonathan Warrick, Kathryn Weber
Assessing decadal-scale coastal change likelihood to define the accuracy and application of scientific information Assessing decadal-scale coastal change likelihood to define the accuracy and application of scientific information
Defining the accuracy and uncertainties of scientific data products is critical to the usability and trustworthiness of scientific information for environmental management and conservation purposes, such as coastal resource prioritization, design, adaptation, and mitigation. The U.S. Geological Survey has a new decadal-scale coastal change assessment product that synthesizes nearly two...
Authors
Elizabeth Pendleton, Erika Lentz, Rachel Henderson, Julia Heslin, Marie Kathleen Bartlett, Travis Sterne
National shoreline change—Summary statistics for vector shorelines from the early 1900s to the 2010s for Puerto Rico National shoreline change—Summary statistics for vector shorelines from the early 1900s to the 2010s for Puerto Rico
The U.S. Geological Survey (USGS) maintains a database of historical shoreline positions for the United States coasts derived from historical sources, such as aerial photographs or topographic surveys, and contemporary sources, such as modern orthophotography, light detection and ranging (lidar) point clouds, and digital elevation models. These shorelines are compiled within a geographic
Authors
Rachel Henderson, Julia Heslin, Emily Himmelstoss, Maritza Barreto-Orta