Julia L Heslin
Julia Heslin is a Geographer with the Woods Hole Coastal and Marine Science Center Coastal Change Group.
Science and Products
Digital Shoreline Analysis System (DSAS)
Software for calculating positional boundary change over time The Digital Shoreline Analysis System (DSAS) version 6 is a standalone application that calculates shoreline or boundary change over time. The GIS of a user’s choice is used to prepare the data for DSAS. Like previous versions, DSAS v.6 enables a user to calculate rate-of-change statistics from multiple historical shoreline positions...
Coastal Change Likelihood
The U.S. Geological Survey, in partnership with the National Park Service through the Natural Resource Preservation Program, developed the Coastal Change Likelihood (CCL) assessment to determine the future likelihood of coastal change along U.S. coastlines in the next decade. The Northeast United States, from Maine to Virginia, was selected for a proof-of-concept pilot study.
Coastal Change Hazards
Natural processes such as waves, tides, and weather, continually change coastal landscapes. The integrity of coastal homes, businesses, and infrastructure can be threatened by hazards associated with event-driven changes, such as extreme storms and their impacts on beach and dune erosion, or longer-term, cumulative changes associated with coastal and marine processes, such as sea-level rise...
Seabeach amaranth presence-absence and barrier island geomorphology metrics as relates to shorebird habitat for Assateague Island National Seashore — 2008, 2010, and 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this probl
Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the Digital Shoreline Analysis system version 5.1 (ver. 2.0, March 2023)
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change.
A GIS Compilation of Vector Shorelines and Shoreline Classification for Puerto Rico from 1970 and 2010
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to
A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software to compute their rates of change. Keeping a record of h
Historical Shorelines for Puerto Rico from 1901 to 1987
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photograph or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software (v5.1) to compute their rates of change. Keeping a recor
National shoreline change—Summary statistics for vector shorelines from the early 1900s to the 2010s for Puerto Rico
The U.S. Geological Survey (USGS) maintains a database of historical shoreline positions for the United States coasts derived from historical sources, such as aerial photographs or topographic surveys, and contemporary sources, such as modern orthophotography, light detection and ranging (lidar) point clouds, and digital elevation models. These shorelines are compiled within a geographic informati
Authors
Rachel E. Henderson, Julia L. Heslin, Emily A. Himmelstoss, Maritza Barreto-Orta
Science and Products
Digital Shoreline Analysis System (DSAS)
Software for calculating positional boundary change over time The Digital Shoreline Analysis System (DSAS) version 6 is a standalone application that calculates shoreline or boundary change over time. The GIS of a user’s choice is used to prepare the data for DSAS. Like previous versions, DSAS v.6 enables a user to calculate rate-of-change statistics from multiple historical shoreline positions...
Coastal Change Likelihood
The U.S. Geological Survey, in partnership with the National Park Service through the Natural Resource Preservation Program, developed the Coastal Change Likelihood (CCL) assessment to determine the future likelihood of coastal change along U.S. coastlines in the next decade. The Northeast United States, from Maine to Virginia, was selected for a proof-of-concept pilot study.
Coastal Change Hazards
Natural processes such as waves, tides, and weather, continually change coastal landscapes. The integrity of coastal homes, businesses, and infrastructure can be threatened by hazards associated with event-driven changes, such as extreme storms and their impacts on beach and dune erosion, or longer-term, cumulative changes associated with coastal and marine processes, such as sea-level rise...
Seabeach amaranth presence-absence and barrier island geomorphology metrics as relates to shorebird habitat for Assateague Island National Seashore — 2008, 2010, and 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this probl
Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the Digital Shoreline Analysis system version 5.1 (ver. 2.0, March 2023)
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change.
A GIS Compilation of Vector Shorelines and Shoreline Classification for Puerto Rico from 1970 and 2010
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to
A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software to compute their rates of change. Keeping a record of h
Historical Shorelines for Puerto Rico from 1901 to 1987
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photograph or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software (v5.1) to compute their rates of change. Keeping a recor
National shoreline change—Summary statistics for vector shorelines from the early 1900s to the 2010s for Puerto Rico
The U.S. Geological Survey (USGS) maintains a database of historical shoreline positions for the United States coasts derived from historical sources, such as aerial photographs or topographic surveys, and contemporary sources, such as modern orthophotography, light detection and ranging (lidar) point clouds, and digital elevation models. These shorelines are compiled within a geographic informati
Authors
Rachel E. Henderson, Julia L. Heslin, Emily A. Himmelstoss, Maritza Barreto-Orta