Mark Petersen is a Supervisory Research Geophysicist with the Earthquake Hazards Program.
Science and Products
Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to forecast s...
Data release for the lower seismogenic depth model of western U.S. earthquakes
A model of the lower seismogenic depth distribution of earthquakes in the western United States was developed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model. This data release presents a recalibration using the hypocentral depths of events M>1 from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 t
Data Release for the 2021 Update of the U.S. National Seismic Hazard Model for Hawaii
The 2021 update of the U.S. National Seismic Hazard Model for Hawaii succeeds the twenty-year-old former model by incorporating new data and modeling techniques to improve the ground shaking forecasts. Output from the model includes probabilistic seismic hazard curves calculated for a 0.02° x 0.02° grid of latitude/longitude locations across Hawaii. The new model provides an expanded suite of ha
Data Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed
This dataset presents where, why, and how much probabilistic ground motions have changed with the 2018 update of the National Seismic Hazard Model (NSHM) for the conterminous U.S. (CONUS) vs. the 2014 NSHM. In the central and eastern U.S., hazard changes are the result of updated ground motion models (further broken down by median and epistemic uncertainty, aleatory variability, and site effects m
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ("NSHM2023_FaultSections_v1"), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ("NSHM2023_EQGeoDB_v1"), which contains fault slip-rate constraints at points. These databases were prepared in anticipation of up
Seismic Hazard, Risk, and Design for South America
These data were calculated to estimate seismic hazard, risk, and design across South America using the latest data, models, and methods. The input data to the model, as well as the output data are available here. The input data includes a seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground-motion models. Output data include h
Data Release for 2018 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
We produce the USGS 2018 one-year probabilistic seismic hazard forecast for the central and eastern United States from induced and natural earthquakes. For consistency, the updated 2018 forecast is developed using the same probabilistic seismicity-based methodology as applied in the two previous forecasts for 2016 and 2017. Rates of earthquakes across the U.S. (M ≥ 3.0) grew rapidly between 2008 a
2017 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
We produced a one-year 2017 seismic hazard forecast for the central and eastern United States from induced and natural earthquakes that replaces the one-year 2016 forecast, and evaluated the 2016 seismic hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of damaging ground shaking in 1 year) in portions of Oklahoma/Kansas, th
Shakemap earthquake scenario: Building Seismic Safety Council 2014 Event Set (BSSC2014)
This is a catalog of earthquake scenarios, represented as ShakeMaps. A ShakeMap is a USGS product that facilitates communication of earthquake effects by portraying a map of the severity of shaking. Maps of shaking severity are provided in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and spectral accelerations (at 0.3, 1.0 and 3 sec oscillator periods).
2016 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
A one-year seismic hazard forecast for the Central and Eastern United States (CEUS), based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment
Seismic-hazard maps for the conterminous United States, 2014
The maps presented here provide an update to the 2008 data contained in U.S Geological Survey Scientific Investigations Map 3195 (http://pubs.usgs.gov/sim/3195/).Probabilistic seismic-hazard maps were prepared for the conterminous United States for 2014 portraying peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with probabilities of exceed
Seismic-Hazard Maps for the Conterminous United States, 2008
Probabilistic seismic-hazard maps were prepared for the conterminous United States portraying peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with probabilities of exceedance of 10 percent in 50 years and 2 percent in 50 years. All of the maps were prepared by combining the hazard derived from spatially smoothed historic seismicity with th
Seismic-hazard maps for the conterminous United States
This publication consists of six map sheets (titles and text included in this document, below), geospatial datasets, and metadata. The geospatial datasets consist of ArcInfo export files for the seismic-hazard point and polygon data shown on the sheets.
Probabilistic seismic-hazard maps were prepared for the conterminous United States portraying peak horizontal acceleration and horizontal spectra
Filter Total Items: 62
Surface fault displacement models for strike-slip faults
Fault displacement models (FDMs) are an essential component of the probabilistic fault displacement hazard analyses (PFDHA), much like ground motion models in the probabilistic seismic hazard analyses for ground motion hazards. In this study, we develop several principal surface FDMs for strike-slip earthquakes. The model development is based on analyses of the new and comprehensive fault displac
Authors
Brian S. J. Chiou, Rui Chen, Kate Thomas, Christopher W. D. Milliner, Timothy E. Dawson, Mark D. Petersen
Lower seismogenic depth model of western U.S. Earthquakes
We present a model of the lower seismogenic depth of earthquakes in the western United States (WUS) estimated using the hypocentral depths of events M > 1, a crustal temperature model, and historical earthquake rupture depth models. Locations of earthquakes are from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021 supplemented with seismicity in southern Cali
Authors
Yuehua Zeng, Mark D. Petersen, Oliver S. Boyd
U.S. Geological Survey coastal plain amplification virtual workshop
In early October of 2020, the U.S. Geological Survey (USGS) held a virtual workshop to discuss Gulf and Atlantic Coastal Plains site-response models. Earthquake researchers came together to assess (1) research related to proposed Coastal Plains amplification models and (2) USGS plans for implementing these models. Presentations spanned a broad range of topics from Atlantic and Gulf Coastal Plains
Authors
Oliver S. Boyd, Thomas L. Pratt, Martin C. Chapman, Allison Shumway, Sanaz Rezaeian, Morgan P. Moschetti, Mark D. Petersen
2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that differ in h
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Morgan P. Moschetti, Andrea L. Llenos, Andrew J. Michael, Charles Mueller, Arthur Frankel, Sanaz Rezaeian, Kenneth S. Rukstales, Daniel E. McNamara, P. Okubo, Yuehua Zeng, Kishor Jaiswal, Sean Kamran Ahdi, Jason M. Altekruse, Brian Shiro
Probabilistic fault displacement hazard assessment (PFDHA) for nuclear installations according to IAEA safety standards
In the last 10 yr, the International Atomic Energy Agency (IAEA) revised its safety standards for site evaluations of nuclear installations in response to emerging fault displacement hazard evaluation practices developed in Member States. New amendments in the revised safety guidance (DS507) explicitly recommend fault displacement hazard assessment, including separate approaches for candidate new
Authors
Alessandro Valentini, Yoshimitsu Fukushima, Paolo Contri, Masato Ono, Toshiaki Sakai, Stephen Thompson, Emmanuel Viallet, Tadashi Annaka, Rui Chen, Robb E. S. Moss, Mark D. Petersen, Francesco Visini, Robert Youngs
The 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US
The U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous U.S. NSHM includes significant changes to the underlying ground motion models (GMMs), most of which are necessary to enable the new multi-p
Authors
Peter M. Powers, Sanaz Rezaeian, Allison Shumway, Mark D. Petersen, Nicolas Luco, Oliver S. Boyd, Morgan P. Moschetti, Arthur Frankel, Eric M. Thompson
The 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US
The United States Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous US NSHM includes major changes to the underlying ground motion models (GMMs). Most of the changes are motivated by the new multi-p
Authors
Sanaz Rezaeian, Peter M. Powers, Allison Shumway, Mark D. Petersen, Nicolas Luco, Arthur Frankel, Morgan P. Moschetti, Eric M. Thompson, Daniel McNamara
The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed
The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two updated smoothe
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles S Mueller, Morgan P. Moschetti, Arthur Frankel, Sanaz Rezaeian, Daniel McNamara, Nicolas Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
The 2018 update of the US National Seismic Hazard Model: Additional period and site class data
As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic seismic hazar
Authors
Allison Shumway, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Kenneth S. Rukstales, Brandon Clayton
Probabilistic seismic hazard analysis at regional and national scale: State of the art and future challenges
Seismic hazard modelling is a multi-disciplinary science that aims to forecast earthquake occurrence and its resultant ground shaking. Such models consist of a probabilistic framework that quantifies uncertainty across a complex system; typically, this includes at least two model components developed from Earth science: seismic-source and ground-motion models. Although there is no scientific presc
Authors
M. C. Gerstenberger, W. Marzocchi, T. J. Allen, M. Pagani, Janice Adams, L. Danciu, Edward H. Field, H. Fujiwara, Nicolas Luco, K-F Ma, C. Meletti, Mark D. Petersen
Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard forecasts: Hawaii tectonic earthquakes and volcanic eruptions
The selection and weighting of ground‐motion models (GMMs) introduces a significant source of uncertainty in U.S. Geological Survey (USGS) National Seismic Hazard Modeling Project (NSHMP) forecasts. In this study, we evaluate 18 candidate GMMs using instrumental ground‐motion observations of horizontal peak ground acceleration (PGA) and 5%‐damped pseudospectral acceleration (0.02–10 s) for tectoni
Authors
Daniel E. McNamara, Emily Wolin, Peter M. Powers, Allison Shumway, Morgan P. Moschetti, John Rekoske, Eric M. Thompson, Charles Mueller, Mark D. Petersen
Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard models: 2018 Anchorage, Alaska, Mw 7.1 subduction zone earthquake sequence
Instrumental ground‐motion recordings from the 2018 Anchorage, Alaska (Mw 7.1), earthquake sequence provide an independent data set allowing us to evaluate the predictive power of ground‐motion models (GMMs) for intraslab earthquakes associated with the Alaska subduction zone. In this study, we evaluate 15 candidate GMMs using instrumental ground‐motion observations of peak ground acceleration an
Authors
Daniel E. McNamara, Emily Wolin, Peter M. Powers, Allison Shumway, Morgan P. Moschetti, John Rekoske, Eric M. Thompson, Charles Mueller, Mark D. Petersen
Science and Products
- Science
Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to forecast s... - Data
Data release for the lower seismogenic depth model of western U.S. earthquakes
A model of the lower seismogenic depth distribution of earthquakes in the western United States was developed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model. This data release presents a recalibration using the hypocentral depths of events M>1 from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 tData Release for the 2021 Update of the U.S. National Seismic Hazard Model for Hawaii
The 2021 update of the U.S. National Seismic Hazard Model for Hawaii succeeds the twenty-year-old former model by incorporating new data and modeling techniques to improve the ground shaking forecasts. Output from the model includes probabilistic seismic hazard curves calculated for a 0.02° x 0.02° grid of latitude/longitude locations across Hawaii. The new model provides an expanded suite of haData Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed
This dataset presents where, why, and how much probabilistic ground motions have changed with the 2018 update of the National Seismic Hazard Model (NSHM) for the conterminous U.S. (CONUS) vs. the 2014 NSHM. In the central and eastern U.S., hazard changes are the result of updated ground motion models (further broken down by median and epistemic uncertainty, aleatory variability, and site effects mEarthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
This Data Release contains preliminary versions of two related databases: 1) A fault sections database ("NSHM2023_FaultSections_v1"), which depicts the geometry of faults capable of hosting independent earthquakes, and 2) An earthquake geology site information database ("NSHM2023_EQGeoDB_v1"), which contains fault slip-rate constraints at points. These databases were prepared in anticipation of upSeismic Hazard, Risk, and Design for South America
These data were calculated to estimate seismic hazard, risk, and design across South America using the latest data, models, and methods. The input data to the model, as well as the output data are available here. The input data includes a seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground-motion models. Output data include hData Release for 2018 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
We produce the USGS 2018 one-year probabilistic seismic hazard forecast for the central and eastern United States from induced and natural earthquakes. For consistency, the updated 2018 forecast is developed using the same probabilistic seismicity-based methodology as applied in the two previous forecasts for 2016 and 2017. Rates of earthquakes across the U.S. (M ≥ 3.0) grew rapidly between 2008 a2017 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
We produced a one-year 2017 seismic hazard forecast for the central and eastern United States from induced and natural earthquakes that replaces the one-year 2016 forecast, and evaluated the 2016 seismic hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of damaging ground shaking in 1 year) in portions of Oklahoma/Kansas, thShakemap earthquake scenario: Building Seismic Safety Council 2014 Event Set (BSSC2014)
This is a catalog of earthquake scenarios, represented as ShakeMaps. A ShakeMap is a USGS product that facilitates communication of earthquake effects by portraying a map of the severity of shaking. Maps of shaking severity are provided in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and spectral accelerations (at 0.3, 1.0 and 3 sec oscillator periods).2016 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes
A one-year seismic hazard forecast for the Central and Eastern United States (CEUS), based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment - Maps
Seismic-hazard maps for the conterminous United States, 2014
The maps presented here provide an update to the 2008 data contained in U.S Geological Survey Scientific Investigations Map 3195 (http://pubs.usgs.gov/sim/3195/).Probabilistic seismic-hazard maps were prepared for the conterminous United States for 2014 portraying peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with probabilities of exceedSeismic-Hazard Maps for the Conterminous United States, 2008
Probabilistic seismic-hazard maps were prepared for the conterminous United States portraying peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with probabilities of exceedance of 10 percent in 50 years and 2 percent in 50 years. All of the maps were prepared by combining the hazard derived from spatially smoothed historic seismicity with thSeismic-hazard maps for the conterminous United States
This publication consists of six map sheets (titles and text included in this document, below), geospatial datasets, and metadata. The geospatial datasets consist of ArcInfo export files for the seismic-hazard point and polygon data shown on the sheets. Probabilistic seismic-hazard maps were prepared for the conterminous United States portraying peak horizontal acceleration and horizontal spectra - Publications
Filter Total Items: 62
Surface fault displacement models for strike-slip faults
Fault displacement models (FDMs) are an essential component of the probabilistic fault displacement hazard analyses (PFDHA), much like ground motion models in the probabilistic seismic hazard analyses for ground motion hazards. In this study, we develop several principal surface FDMs for strike-slip earthquakes. The model development is based on analyses of the new and comprehensive fault displacAuthorsBrian S. J. Chiou, Rui Chen, Kate Thomas, Christopher W. D. Milliner, Timothy E. Dawson, Mark D. PetersenLower seismogenic depth model of western U.S. Earthquakes
We present a model of the lower seismogenic depth of earthquakes in the western United States (WUS) estimated using the hypocentral depths of events M > 1, a crustal temperature model, and historical earthquake rupture depth models. Locations of earthquakes are from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021 supplemented with seismicity in southern CaliAuthorsYuehua Zeng, Mark D. Petersen, Oliver S. BoydU.S. Geological Survey coastal plain amplification virtual workshop
In early October of 2020, the U.S. Geological Survey (USGS) held a virtual workshop to discuss Gulf and Atlantic Coastal Plains site-response models. Earthquake researchers came together to assess (1) research related to proposed Coastal Plains amplification models and (2) USGS plans for implementing these models. Presentations spanned a broad range of topics from Atlantic and Gulf Coastal PlainsAuthorsOliver S. Boyd, Thomas L. Pratt, Martin C. Chapman, Allison Shumway, Sanaz Rezaeian, Morgan P. Moschetti, Mark D. Petersen2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that differ in hAuthorsMark D. Petersen, Allison Shumway, Peter M. Powers, Morgan P. Moschetti, Andrea L. Llenos, Andrew J. Michael, Charles Mueller, Arthur Frankel, Sanaz Rezaeian, Kenneth S. Rukstales, Daniel E. McNamara, P. Okubo, Yuehua Zeng, Kishor Jaiswal, Sean Kamran Ahdi, Jason M. Altekruse, Brian ShiroProbabilistic fault displacement hazard assessment (PFDHA) for nuclear installations according to IAEA safety standards
In the last 10 yr, the International Atomic Energy Agency (IAEA) revised its safety standards for site evaluations of nuclear installations in response to emerging fault displacement hazard evaluation practices developed in Member States. New amendments in the revised safety guidance (DS507) explicitly recommend fault displacement hazard assessment, including separate approaches for candidate newAuthorsAlessandro Valentini, Yoshimitsu Fukushima, Paolo Contri, Masato Ono, Toshiaki Sakai, Stephen Thompson, Emmanuel Viallet, Tadashi Annaka, Rui Chen, Robb E. S. Moss, Mark D. Petersen, Francesco Visini, Robert YoungsThe 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US
The U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous U.S. NSHM includes significant changes to the underlying ground motion models (GMMs), most of which are necessary to enable the new multi-pAuthorsPeter M. Powers, Sanaz Rezaeian, Allison Shumway, Mark D. Petersen, Nicolas Luco, Oliver S. Boyd, Morgan P. Moschetti, Arthur Frankel, Eric M. ThompsonThe 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US
The United States Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous US NSHM includes major changes to the underlying ground motion models (GMMs). Most of the changes are motivated by the new multi-pAuthorsSanaz Rezaeian, Peter M. Powers, Allison Shumway, Mark D. Petersen, Nicolas Luco, Arthur Frankel, Morgan P. Moschetti, Eric M. Thompson, Daniel McNamaraThe 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed
The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two updated smootheAuthorsMark D. Petersen, Allison Shumway, Peter M. Powers, Charles S Mueller, Morgan P. Moschetti, Arthur Frankel, Sanaz Rezaeian, Daniel McNamara, Nicolas Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua ZengThe 2018 update of the US National Seismic Hazard Model: Additional period and site class data
As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic seismic hazarAuthorsAllison Shumway, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Kenneth S. Rukstales, Brandon ClaytonProbabilistic seismic hazard analysis at regional and national scale: State of the art and future challenges
Seismic hazard modelling is a multi-disciplinary science that aims to forecast earthquake occurrence and its resultant ground shaking. Such models consist of a probabilistic framework that quantifies uncertainty across a complex system; typically, this includes at least two model components developed from Earth science: seismic-source and ground-motion models. Although there is no scientific prescAuthorsM. C. Gerstenberger, W. Marzocchi, T. J. Allen, M. Pagani, Janice Adams, L. Danciu, Edward H. Field, H. Fujiwara, Nicolas Luco, K-F Ma, C. Meletti, Mark D. PetersenEvaluation of ground‐motion models for U.S. Geological Survey seismic hazard forecasts: Hawaii tectonic earthquakes and volcanic eruptions
The selection and weighting of ground‐motion models (GMMs) introduces a significant source of uncertainty in U.S. Geological Survey (USGS) National Seismic Hazard Modeling Project (NSHMP) forecasts. In this study, we evaluate 18 candidate GMMs using instrumental ground‐motion observations of horizontal peak ground acceleration (PGA) and 5%‐damped pseudospectral acceleration (0.02–10 s) for tectoniAuthorsDaniel E. McNamara, Emily Wolin, Peter M. Powers, Allison Shumway, Morgan P. Moschetti, John Rekoske, Eric M. Thompson, Charles Mueller, Mark D. PetersenEvaluation of ground‐motion models for U.S. Geological Survey seismic hazard models: 2018 Anchorage, Alaska, Mw 7.1 subduction zone earthquake sequence
Instrumental ground‐motion recordings from the 2018 Anchorage, Alaska (Mw 7.1), earthquake sequence provide an independent data set allowing us to evaluate the predictive power of ground‐motion models (GMMs) for intraslab earthquakes associated with the Alaska subduction zone. In this study, we evaluate 15 candidate GMMs using instrumental ground‐motion observations of peak ground acceleration anAuthorsDaniel E. McNamara, Emily Wolin, Peter M. Powers, Allison Shumway, Morgan P. Moschetti, John Rekoske, Eric M. Thompson, Charles Mueller, Mark D. Petersen - News