Olivia A. De Meo
Olivia De Meo is a Physical Scientist for the Woods Hole Coastal and Marine Science Center
Science and Products
DUNEX Pea Island Experiment
The DUring Nearshore Event eXperiment (DUNEX) is an aggregation of multiple scientific organizations collaborating to increase understanding of nearshore processes. The U.S. Geological Survey (USGS) has chosen Pea Island National Wildlife Refuge as a study location to investigate and characterize the magnitude and timing of changes to coastal morphology (i.e., dunes, shorelines), bathymetry, and...
Coastal and Estuarine Dynamics Project
Coastal and Estuarine Dynamics Project exists to support ocean, coastal and estuarine research. The staff have a broad set of skills; from instrument design and development to all forms of work at sea to software development and data management. The team has successfully deployed and recovered more than 1000 data collection platforms for research in the last 30 years.
Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements in the nearshore zone of Sandy Neck Beach, Cape Cod Bay, Massachusetts, collected in March and April, 2021
The U.S. Geological Survey Woods Hole Coastal and Marine Science Center collected data to assess cross-shore sediment transport prediction techniques in coastal models for a wave-dominated sandy coast. A quadpod was deployed on the seafloor in the nearshore zone of Sandy Neck Beach, Cape Cod Bay, MA in March 2021 to analyze water velocities near the seabed and the response of the seabed to these f
Supplementary data in support of oceanographic and water quality times-series measurements made at Thompsons Beach and Stone Harbor, NJ from September 2018 to February 2023
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coa
Time-series measurements of oceanographic and water quality data collected at Thompsons Beach and Stone Harbor, New Jersey, USA, September 2018 to September 2019 and March 2022 to May 2023
In October 2012, Hurricane Sandy made landfall in the Northeastern U.S., affecting ecosystems and communities of 12 states. In response, the National Fish and Wildlife Federation (NFWF) and the U.S. Department of Interior (DOI) implemented the Hurricane Sandy Coastal Resiliency Program, which funded various projects designed to reduce future impacts of coastal hazards. These projects included mars
Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld mult
Time-series measurements of oceanographic and water quality data collected in the Herring River, Wellfleet, Massachusetts, USA, November 2018 to November 2019
Restoration in the tidally restricted Herring River Estuary in Wellfleet, MA benefits from understanding pre-restoration sediment transport conditions. Submerged sensors were deployed at four sites landward and seaward of the Herring River restriction to measure water velocity, water quality, water level, waves, and seabed elevation. These data will be used to evaluate sediment dynamics and geomor
Meteorological data from Pea Island National Wildlife Refuge, North Carolina, 9/13/2021 to 10/24/2021
Meteorological data were collected as part of the DUring Nearshore Event eXperiment (DUNEX) on Pea Island National Wildlife Refuge in North Carolina during 2021. The DUNEX project is a collaborative, multi-agency experiment designed to provide comprehensive measurements of storm-induced processes on coastal habitats. The overarching goals of this study are to understand oceanographic processes and
Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023)
The Herring River in Wellfleet, MA is a tidally-restricted estuary system. Management options including potential restoration of unrestricted tidal flows require an understanding of pre-restoration sediment conditions. Altering future tidal flows may cause changes in net sediment flux and direction, which could affect marsh restoration and aquaculture in Wellfleet Harbor. This research aims to mea
Grain-Size Analysis Data From Sediment Samples in Support of Oceanographic and Water-Quality Measurements in the Nearshore Zone of Matanzas Inlet, Florida, 2018
The interactions of waves and currents near an inlet influence sediment and alter sea-floor bedforms, especially during winter storms. As part of the Cross-Shore and Inlets Processes project to improve our understanding of cross-shore processes that control sediment budgets, the U.S. Geological Survey deployed instrumented platforms at two sites near Matanzas Inlet between January 24 and April 13,
Calculation of a suspended-sediment concentration-turbidity regression model and flood-ebb suspended-sediment concentration differentials from marshes near Stone Harbor and Thompsons Beach, New Jersey, 2018–19 and 2022–23
The U.S. Geological Survey collected water velocity and water quality data from salt marshes in Great Channel, southwest of Stone Harbor, New Jersey, and near Thompsons Beach, New Jersey, to evaluate restoration effectiveness after Hurricane Sandy and monitor postrestoration marsh health. Time series data of turbidity and water velocity were collected from 2018 to 2019 and 2022 to 2023 at both sit
Authors
Olivia A. De Meo, Robert D. Bales, Neil K. Ganju, Eric D. Marsjanik, Steven E. Suttles
Calibrating optical turbidity measurements with suspended-sediment concentrations from the Herring River in Wellfleet, Massachusetts, from November 2018 to November 2019
The sediment budget in the tidally restricted Herring River in Wellfleet, Massachusetts, must be quantified so restoration options for the river can be evaluated. Platforms equipped with optical turbidity sensors were deployed seaward and landward of the Herring River restriction to measure a time series of turbidity, from which a time series of suspended-sediment concentration (SSC) can be estima
Authors
Olivia A. De Meo, Neil K. Ganju, Robert D. Bales, Eric D. Marsjanik, Steven E. Suttles
Oceanographic Time Series Data Processing Library
This is stglib, the USGS Oceanographic Time-Series Processing Library. This Python software package contains code to process data from a variety of oceanographic instrumentation, consistent with the procedures of the USGS Coastal/Marine Hazards and Resources Program.
Science and Products
DUNEX Pea Island Experiment
The DUring Nearshore Event eXperiment (DUNEX) is an aggregation of multiple scientific organizations collaborating to increase understanding of nearshore processes. The U.S. Geological Survey (USGS) has chosen Pea Island National Wildlife Refuge as a study location to investigate and characterize the magnitude and timing of changes to coastal morphology (i.e., dunes, shorelines), bathymetry, and...
Coastal and Estuarine Dynamics Project
Coastal and Estuarine Dynamics Project exists to support ocean, coastal and estuarine research. The staff have a broad set of skills; from instrument design and development to all forms of work at sea to software development and data management. The team has successfully deployed and recovered more than 1000 data collection platforms for research in the last 30 years.
Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements in the nearshore zone of Sandy Neck Beach, Cape Cod Bay, Massachusetts, collected in March and April, 2021
The U.S. Geological Survey Woods Hole Coastal and Marine Science Center collected data to assess cross-shore sediment transport prediction techniques in coastal models for a wave-dominated sandy coast. A quadpod was deployed on the seafloor in the nearshore zone of Sandy Neck Beach, Cape Cod Bay, MA in March 2021 to analyze water velocities near the seabed and the response of the seabed to these f
Supplementary data in support of oceanographic and water quality times-series measurements made at Thompsons Beach and Stone Harbor, NJ from September 2018 to February 2023
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coa
Time-series measurements of oceanographic and water quality data collected at Thompsons Beach and Stone Harbor, New Jersey, USA, September 2018 to September 2019 and March 2022 to May 2023
In October 2012, Hurricane Sandy made landfall in the Northeastern U.S., affecting ecosystems and communities of 12 states. In response, the National Fish and Wildlife Federation (NFWF) and the U.S. Department of Interior (DOI) implemented the Hurricane Sandy Coastal Resiliency Program, which funded various projects designed to reduce future impacts of coastal hazards. These projects included mars
Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld mult
Time-series measurements of oceanographic and water quality data collected in the Herring River, Wellfleet, Massachusetts, USA, November 2018 to November 2019
Restoration in the tidally restricted Herring River Estuary in Wellfleet, MA benefits from understanding pre-restoration sediment transport conditions. Submerged sensors were deployed at four sites landward and seaward of the Herring River restriction to measure water velocity, water quality, water level, waves, and seabed elevation. These data will be used to evaluate sediment dynamics and geomor
Meteorological data from Pea Island National Wildlife Refuge, North Carolina, 9/13/2021 to 10/24/2021
Meteorological data were collected as part of the DUring Nearshore Event eXperiment (DUNEX) on Pea Island National Wildlife Refuge in North Carolina during 2021. The DUNEX project is a collaborative, multi-agency experiment designed to provide comprehensive measurements of storm-induced processes on coastal habitats. The overarching goals of this study are to understand oceanographic processes and
Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023)
The Herring River in Wellfleet, MA is a tidally-restricted estuary system. Management options including potential restoration of unrestricted tidal flows require an understanding of pre-restoration sediment conditions. Altering future tidal flows may cause changes in net sediment flux and direction, which could affect marsh restoration and aquaculture in Wellfleet Harbor. This research aims to mea
Grain-Size Analysis Data From Sediment Samples in Support of Oceanographic and Water-Quality Measurements in the Nearshore Zone of Matanzas Inlet, Florida, 2018
The interactions of waves and currents near an inlet influence sediment and alter sea-floor bedforms, especially during winter storms. As part of the Cross-Shore and Inlets Processes project to improve our understanding of cross-shore processes that control sediment budgets, the U.S. Geological Survey deployed instrumented platforms at two sites near Matanzas Inlet between January 24 and April 13,
Calculation of a suspended-sediment concentration-turbidity regression model and flood-ebb suspended-sediment concentration differentials from marshes near Stone Harbor and Thompsons Beach, New Jersey, 2018–19 and 2022–23
The U.S. Geological Survey collected water velocity and water quality data from salt marshes in Great Channel, southwest of Stone Harbor, New Jersey, and near Thompsons Beach, New Jersey, to evaluate restoration effectiveness after Hurricane Sandy and monitor postrestoration marsh health. Time series data of turbidity and water velocity were collected from 2018 to 2019 and 2022 to 2023 at both sit
Authors
Olivia A. De Meo, Robert D. Bales, Neil K. Ganju, Eric D. Marsjanik, Steven E. Suttles
Calibrating optical turbidity measurements with suspended-sediment concentrations from the Herring River in Wellfleet, Massachusetts, from November 2018 to November 2019
The sediment budget in the tidally restricted Herring River in Wellfleet, Massachusetts, must be quantified so restoration options for the river can be evaluated. Platforms equipped with optical turbidity sensors were deployed seaward and landward of the Herring River restriction to measure a time series of turbidity, from which a time series of suspended-sediment concentration (SSC) can be estima
Authors
Olivia A. De Meo, Neil K. Ganju, Robert D. Bales, Eric D. Marsjanik, Steven E. Suttles
Oceanographic Time Series Data Processing Library
This is stglib, the USGS Oceanographic Time-Series Processing Library. This Python software package contains code to process data from a variety of oceanographic instrumentation, consistent with the procedures of the USGS Coastal/Marine Hazards and Resources Program.