I am a riverine ecologist with research interests in nutrient cycling and river-floodplain connectivity. My current projects focus on the capability of managing rivers and their floodplains for nutrient removal.
Education and Certifications
2019 PhD, Interdisciplinary River Science, University of New England, New South Wales, Australia
2003 M.S., Biology, University of Wisconsin - La Crosse
2001 B.S., Biology-Environmental Concentration, University of Wisconsin - La Crosse
Science and Products
Climate-Driven Connectivity Between Prairie-Pothole and Riparian Wetlands in the Upper Mississippi River Watershed: Implications for Wildlife Habitat and Water Quality
Wetland conservation in the Upper Mississippi River Basin (UMRB) is a priority for Federal, State, NGO, and Tribal land managers to support migratory bird habitat in Minnesota and Iowa. These wetlands, known as depressional wetlands, also provide ecosystem services associated with flood water storage and enhancing down-stream water quality by storing and processing nutrients. Understanding how con
Nutrient cycling in agricultural watersheds of the Great Lakes
Nutrient Cycling in Aquatic Ecosystems Nutrients lost from agricultural areas in watersheds of the Great Lakes cause harmful algal blooms and hypoxia in some areas of the Great Lakes. Substantial efforts are being made in these watersheds to reduce the amount of nutrients entering the streams and rivers; however, additional work is needed to further reduce nutrient loads to meet international...
Nutrient Cycling in Aquatic Ecosystems
Nitrogen and phosphorus are plant essential nutrients that are currently in excess in many aquatic ecosystems due to runoff from urban and agricultural areas. In high amounts, these nutrients are detrimental to aquatic ecosystem health, because elevated nutrients promote excessive growth or “blooms” of algae and other nuisance species. Many species that cause blooms can produce toxins which are...
Nutrient retention on the Upper Mississippi River Floodplain
Nutrient Cycling in Aquatic Ecosystems Rivers have a natural capacity to improve water quality when they are connected to their natural floodplains and are not overloaded with sediment and nutrient runoff. Where rivers have been disconnected from their historical floodplains and channelized to eliminate backwater areas, increased flow and nutrient loads have contributed to local and downstream...
HABs: Characterizing Zones of High Potential Nutrient Cycling in Agricultural Catchments
River sediments have the capacity to remove nutrients from the water column which lowers the nutrient load to downstream water bodies. The objectives of this project were to characterize rates of sediment nitrogen removal and phosphorus retention in river networks draining agricultural watersheds and to assess how land use and land management actions affect these rates. This information is helpful...
Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2019 and 2021 Data
The Maumee River transports huge loads of nitrogen (N) and phosphorus (P) to Lake Erie. The increased concentrations of N and P are causing eutrophication of the lake, creating hypoxic zones, and contributing to phytoplankton blooms. It is hypothesized that the P loads are a major contributor to harmful algal blooms that occur in the western basin of Lake Erie, particularly in summer. The Maumee R
Submersed Macrophyte Biomass Estimates in Pools 4, 8 and 13 of the Upper Mississippi River, 1998-2018
System-scale restoration efforts within the Upper Mississippi River Restoration Program have included annual monitoring of submersed aquatic vegetation (SAV) since 1998 in four representative reaches spanning approximately 440 river km. We developed predictive models relating monitoring data (site-scale SAV abundance indices) to diver-harvested SAV biomass, used the models to back-estimate annual
2001 Upper Mississippi River Pool 8 Rake Study Data Set.
The Yin et al. 2000 rake method is used by researchers in the Upper Mississippi River Restoration Program to estimate the distribution of submersed aquatic vegetation on the Upper Mississippi River System. Biomass data were collected in 2001 to assess if the Yin et al. 2000 method could be used to estimate biomass based on the rake density ratings. Sediment samples also were collected to measure s
Maquoketa River Floodplain-River Connectivity 2014-2016 Data
The Maquoketa River carries some of the highest sediment and nutrient loads in the Upper Mississippi River, contributing to eutrophication and hypoxic conditions in the Mississippi River and Gulf of Mexico. Floodplains provide the ability to remove and sequester, sediments, nitrogen, phosphorus, and carbon; however effectiveness of floodplains is limited by the extent and connection of the floodpl
Food web fatty acids and stable isotopes in the Upper Mississippi River Basin 2013-2014: Data
This dataset includes information from multiple taxa collected from four main reaches in the Upper Mississippi River Basin, including La Grange reach of Illinois River, Pool 2 of Mississippi River, Pool 19 of Mississippi River, and the St. Croix River. Taxa include hydropsychid caddisflies, chironomids, hexagenia mayflies, threeridge mussels, mapleleaf mussels, Wabash pigtoe mussels, bigmouth buff
Filter Total Items: 19
Watershed- and reach-scale drivers of phosphorus retention and release by streambed sediment in a western Lake Erie watershed during summer
Reducing phosphorus (P) concentrations in aquatic ecosystems, is necessary to improve water quality and reduce the occurrence of harmful cyanobacterial algal blooms. Managing P reduction requires information on the role rivers play in P transport from land to downstream water bodies, but we have a poor understanding of when and where river systems are P sources or sinks. During the summers of 2019
Sediment and nutrient retention on a reconnected floodplain of an Upper Mississippi River tributary, 2013–2018
The connection of rivers with their floodplains has been greatly reduced in agricultural drainage basins, especially in the Upper Mississippi River Basin. The restriction of the Mississippi River from its floodplain has reduced the sediment trapping and nutrient deposition capabilities of the floodplain, exacerbating water quality problems in the river and in downstream waterbodies. A small part o
Annual summer submersed macrophyte standing stocks estimated from long-term monitoring data in the Upper Mississippi River
System-scale restoration efforts within the Upper Mississippi River National Wildlife and Fish Refuge have included annual monitoring of submersed aquatic vegetation (SAV) since 1998 in four representative reaches spanning ∼ 440 river kilometers. We developed predictive models relating monitoring data (site-scale SAV abundance indices) to diver-harvested SAV biomass, used the models to back-estima
Phosphorus sources, forms, and abundance as a function of streamflow and field conditions in a Maumee River tributary, 2016-2019
Total phosphorus (TP), dissolved P (DP), and suspended sediment (SS) were sampled in Black Creek, Indiana, monthly during base flow and for 100 storm events during water years 2016–2019, enabling analysis of how each of these varied as a function of streamflow and field conditions at nested edge-of-field sites. Particulate P was normalized for SS (PSS = [TP − DP]/SS). Streamflow events were differ
Riparian forest cover modulates phosphorus storage and nitrogen cycling in agricultural stream sediments
Watershed land cover affects in-stream water quality and sediment nutrient dynamics. The presence of natural land cover in the riparian zone can reduce the negative effects of agricultural land use on water quality; however, literature evaluating the effects of natural riparian land cover on stream sediment nutrient dynamics is scarce. The objective of this study was to assess if stream sediment p
Land use effects on sediment nutrient processes in a heavily modified watershed using structural equation models
Contemporary land use can affect sediment nutrient processes in rivers draining heavily modified watersheds; however, studies linking land use to sediment nutrient processes in large river networks are limited. In this study, we developed and evaluated structural equation models (SE models) for denitrification and phosphorus retention capacity to determine direct and indirect linkages between curr
Complex response of sediment phosphorus to land use and management within a river network
Rivers affected by anthropogenic nutrient inputs can retain some of the phosphorus (P) load through sediment retention and burial. Determining the influence of land use and management on sediment P concentrations and P retention in fluvial ecosystems is challenging because of different stressors operating at multiple spatial and temporal scales. In this study, we sought to determine how land use a
Denitrification in the river network of a mixed land use watershed: Unpacking the complexities
River networks have the potential to permanently remove nitrogen through denitrification. Few studies have measured denitrification rates within an entire river network or assessed how land use affect rates at larger spatial scales. We sampled 108 sites throughout the network of the Fox River watershed, Wisconsin, to determine if land use influence sediment denitrification rates, and to identify z
Sediment oxygen demand: A review of in situ methods
Sediment oxygen demand (SOD) plays a fundamental role in biological and chemical processes within the benthic layer of a water body. Land use, including agricultural land use, can affect SOD. However, a wide variety of approaches have been used for in situ SOD chamber construction and data collection, and modelers frequently use SOD values from the literature, without consideration of the differen
Evaluating potential effects of bigheaded carps on fatty acid profiles of multiple trophic levels in large rivers of the Midwest, USA
Recent work indicates that the establishment of bigheaded carps (Hypophthalmichthys spp.) in the United States has led to a reduction in condition of native planktivores and may detrimentally affect other trophic levels by altering the base of aquatic food webs. We used fatty acids to evaluate potential effects of bigheaded carps on taxa from multiple trophic levels in the Upper Mississippi, Illin
Spatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems
Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate
Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited
Science and Products
- Science
Climate-Driven Connectivity Between Prairie-Pothole and Riparian Wetlands in the Upper Mississippi River Watershed: Implications for Wildlife Habitat and Water Quality
Wetland conservation in the Upper Mississippi River Basin (UMRB) is a priority for Federal, State, NGO, and Tribal land managers to support migratory bird habitat in Minnesota and Iowa. These wetlands, known as depressional wetlands, also provide ecosystem services associated with flood water storage and enhancing down-stream water quality by storing and processing nutrients. Understanding how conNutrient cycling in agricultural watersheds of the Great Lakes
Nutrient Cycling in Aquatic Ecosystems Nutrients lost from agricultural areas in watersheds of the Great Lakes cause harmful algal blooms and hypoxia in some areas of the Great Lakes. Substantial efforts are being made in these watersheds to reduce the amount of nutrients entering the streams and rivers; however, additional work is needed to further reduce nutrient loads to meet international...Nutrient Cycling in Aquatic Ecosystems
Nitrogen and phosphorus are plant essential nutrients that are currently in excess in many aquatic ecosystems due to runoff from urban and agricultural areas. In high amounts, these nutrients are detrimental to aquatic ecosystem health, because elevated nutrients promote excessive growth or “blooms” of algae and other nuisance species. Many species that cause blooms can produce toxins which are...Nutrient retention on the Upper Mississippi River Floodplain
Nutrient Cycling in Aquatic Ecosystems Rivers have a natural capacity to improve water quality when they are connected to their natural floodplains and are not overloaded with sediment and nutrient runoff. Where rivers have been disconnected from their historical floodplains and channelized to eliminate backwater areas, increased flow and nutrient loads have contributed to local and downstream...HABs: Characterizing Zones of High Potential Nutrient Cycling in Agricultural Catchments
River sediments have the capacity to remove nutrients from the water column which lowers the nutrient load to downstream water bodies. The objectives of this project were to characterize rates of sediment nitrogen removal and phosphorus retention in river networks draining agricultural watersheds and to assess how land use and land management actions affect these rates. This information is helpful... - Data
Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2019 and 2021 Data
The Maumee River transports huge loads of nitrogen (N) and phosphorus (P) to Lake Erie. The increased concentrations of N and P are causing eutrophication of the lake, creating hypoxic zones, and contributing to phytoplankton blooms. It is hypothesized that the P loads are a major contributor to harmful algal blooms that occur in the western basin of Lake Erie, particularly in summer. The Maumee RSubmersed Macrophyte Biomass Estimates in Pools 4, 8 and 13 of the Upper Mississippi River, 1998-2018
System-scale restoration efforts within the Upper Mississippi River Restoration Program have included annual monitoring of submersed aquatic vegetation (SAV) since 1998 in four representative reaches spanning approximately 440 river km. We developed predictive models relating monitoring data (site-scale SAV abundance indices) to diver-harvested SAV biomass, used the models to back-estimate annual2001 Upper Mississippi River Pool 8 Rake Study Data Set.
The Yin et al. 2000 rake method is used by researchers in the Upper Mississippi River Restoration Program to estimate the distribution of submersed aquatic vegetation on the Upper Mississippi River System. Biomass data were collected in 2001 to assess if the Yin et al. 2000 method could be used to estimate biomass based on the rake density ratings. Sediment samples also were collected to measure sMaquoketa River Floodplain-River Connectivity 2014-2016 Data
The Maquoketa River carries some of the highest sediment and nutrient loads in the Upper Mississippi River, contributing to eutrophication and hypoxic conditions in the Mississippi River and Gulf of Mexico. Floodplains provide the ability to remove and sequester, sediments, nitrogen, phosphorus, and carbon; however effectiveness of floodplains is limited by the extent and connection of the floodplFood web fatty acids and stable isotopes in the Upper Mississippi River Basin 2013-2014: Data
This dataset includes information from multiple taxa collected from four main reaches in the Upper Mississippi River Basin, including La Grange reach of Illinois River, Pool 2 of Mississippi River, Pool 19 of Mississippi River, and the St. Croix River. Taxa include hydropsychid caddisflies, chironomids, hexagenia mayflies, threeridge mussels, mapleleaf mussels, Wabash pigtoe mussels, bigmouth buff - Publications
Filter Total Items: 19
Watershed- and reach-scale drivers of phosphorus retention and release by streambed sediment in a western Lake Erie watershed during summer
Reducing phosphorus (P) concentrations in aquatic ecosystems, is necessary to improve water quality and reduce the occurrence of harmful cyanobacterial algal blooms. Managing P reduction requires information on the role rivers play in P transport from land to downstream water bodies, but we have a poor understanding of when and where river systems are P sources or sinks. During the summers of 2019Sediment and nutrient retention on a reconnected floodplain of an Upper Mississippi River tributary, 2013–2018
The connection of rivers with their floodplains has been greatly reduced in agricultural drainage basins, especially in the Upper Mississippi River Basin. The restriction of the Mississippi River from its floodplain has reduced the sediment trapping and nutrient deposition capabilities of the floodplain, exacerbating water quality problems in the river and in downstream waterbodies. A small part oAnnual summer submersed macrophyte standing stocks estimated from long-term monitoring data in the Upper Mississippi River
System-scale restoration efforts within the Upper Mississippi River National Wildlife and Fish Refuge have included annual monitoring of submersed aquatic vegetation (SAV) since 1998 in four representative reaches spanning ∼ 440 river kilometers. We developed predictive models relating monitoring data (site-scale SAV abundance indices) to diver-harvested SAV biomass, used the models to back-estimaPhosphorus sources, forms, and abundance as a function of streamflow and field conditions in a Maumee River tributary, 2016-2019
Total phosphorus (TP), dissolved P (DP), and suspended sediment (SS) were sampled in Black Creek, Indiana, monthly during base flow and for 100 storm events during water years 2016–2019, enabling analysis of how each of these varied as a function of streamflow and field conditions at nested edge-of-field sites. Particulate P was normalized for SS (PSS = [TP − DP]/SS). Streamflow events were differRiparian forest cover modulates phosphorus storage and nitrogen cycling in agricultural stream sediments
Watershed land cover affects in-stream water quality and sediment nutrient dynamics. The presence of natural land cover in the riparian zone can reduce the negative effects of agricultural land use on water quality; however, literature evaluating the effects of natural riparian land cover on stream sediment nutrient dynamics is scarce. The objective of this study was to assess if stream sediment pLand use effects on sediment nutrient processes in a heavily modified watershed using structural equation models
Contemporary land use can affect sediment nutrient processes in rivers draining heavily modified watersheds; however, studies linking land use to sediment nutrient processes in large river networks are limited. In this study, we developed and evaluated structural equation models (SE models) for denitrification and phosphorus retention capacity to determine direct and indirect linkages between currComplex response of sediment phosphorus to land use and management within a river network
Rivers affected by anthropogenic nutrient inputs can retain some of the phosphorus (P) load through sediment retention and burial. Determining the influence of land use and management on sediment P concentrations and P retention in fluvial ecosystems is challenging because of different stressors operating at multiple spatial and temporal scales. In this study, we sought to determine how land use aDenitrification in the river network of a mixed land use watershed: Unpacking the complexities
River networks have the potential to permanently remove nitrogen through denitrification. Few studies have measured denitrification rates within an entire river network or assessed how land use affect rates at larger spatial scales. We sampled 108 sites throughout the network of the Fox River watershed, Wisconsin, to determine if land use influence sediment denitrification rates, and to identify zSediment oxygen demand: A review of in situ methods
Sediment oxygen demand (SOD) plays a fundamental role in biological and chemical processes within the benthic layer of a water body. Land use, including agricultural land use, can affect SOD. However, a wide variety of approaches have been used for in situ SOD chamber construction and data collection, and modelers frequently use SOD values from the literature, without consideration of the differenEvaluating potential effects of bigheaded carps on fatty acid profiles of multiple trophic levels in large rivers of the Midwest, USA
Recent work indicates that the establishment of bigheaded carps (Hypophthalmichthys spp.) in the United States has led to a reduction in condition of native planktivores and may detrimentally affect other trophic levels by altering the base of aquatic food webs. We used fatty acids to evaluate potential effects of bigheaded carps on taxa from multiple trophic levels in the Upper Mississippi, IllinSpatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems
Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluateBeyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited