Steven Cahan is a Cartographer with the USGS Geology, Energy & Minerals (GEM) Science Center in Reston, VA.
Steven received a bachelors degree in geography from Virginia Tech in 2010. Since joining the USGS, Steven has provided support in GIS to several projects including the CO2 sequestration project, the Gulf Coast assessment, and the National Geologic Map Database. His work includes geospatial analysis, map production, and keeping image servers up to date.
Professional Experience
May 2010 - present, Cartographer, USGS Geology, Energy & Minerals Science Center, Reston, VA
Education and Certifications
B.A. Geography - Geospatial and Environmental Analysis, Virginia Tech
Science and Products
Dynamic estimates of geologic CO2 storage resources in the Illinois Basin constrained by reinjectivity of brine extracted for pressure management
Database of the "North America Tapestry of Time and Terrain" map
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary
Estimating market conditions for potential entry of new sources of anthropogenic CO2 for EOR in the Permian Basin
Geologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins
Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters
Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources
Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources
Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources
National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands
Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas
Optimization simulations to estimate maximum brine injection rates in the Illinois Basin
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release
Geologic formations and mine locations for potential CO2 mineralization
USGS Gulf Coast Source Rock Database
The USGS Gulf Coast Source Rock Database (GCSRD) is an online repository for all publicly available source rock data (outcrop and subsurface) from the states of Florida, Georgia, Alabama, Mississippi, Louisiana, Arkansas, and Texas. "Source rock data" are defined in this context as data that include any of the following measured or calculated parameters...
Science and Products
- Publications
Filter Total Items: 22
Dynamic estimates of geologic CO2 storage resources in the Illinois Basin constrained by reinjectivity of brine extracted for pressure management
Geologic carbon storage (GCS) is likely to be an important part of global efforts to decarbonize the energy industry. Widespread deployment of GCS relies on strategies to maximize CO2 injection rates while minimizing reservoir pressurization that could induce seismicity and/or fluid leakage into groundwater resources. Brine extraction from CO2 storage formations with subsurface reinjection elsewheDatabase of the "North America Tapestry of Time and Terrain" map
In 2000, the U.S. Geological Survey published a distinctive map, entitled “A Tapestry of Time and Terrain,” which showed a generalized depiction of the geology in the conterminous United States, draped over shaded-relief topography. In 2003, that map concept was extended geographically, and the resulting new map was published at 1:8,000,000 scale as “The North America Tapestry of Time and Terrain”National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied to amenable oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estimates of the mass of CO2 thatNational assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary
IntroductionIn 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources that might be produced by using current carbon dioxide enhanced oil recovery (CO2-EOR) technologies in amenable conventional oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estEstimating market conditions for potential entry of new sources of anthropogenic CO2 for EOR in the Permian Basin
This study attempts to determine feasible carbon dioxide (CO2) price thresholds for entry of new sources of anthropogenic (man-made) CO2 for utilization in enhanced oil recovery (EOR) in the Permian Basin. Much of the discussion about carbon capture, utilization, and storage (CCUS) has focused on the high costs of carbon capture as the major barrier to entry of new anthropogenic sources of CO2 forGeologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins
This chapter presents information pertinent to the geologic carbon dioxide (CO2) sequestration potential within saline aquifers located in the Atlantic Coastal Plain and Eastern Mesozoic Rift Basins of the Eastern United States. The Atlantic Coastal Plain is underlain by a Jurassic to Quaternary succession of sedimentary strata that onlap westward onto strata of the Appalachian Piedmont physiograpGeologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters
In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model that incorGeologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework dGeologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources
This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environmeGeologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for tNational assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resGeologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas
The 2007 Energy Independence and Security Act directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and is intended to be used at regional to sub-basinal scales. The Williston Bas - Data
Optimization simulations to estimate maximum brine injection rates in the Illinois Basin
We developed a methodology to estimate maximum brine injection rates in subsurface formations across wide geographic areas using inverse modeling-based optimization techniques. We first defined geographic areas where groundwater was too saline to meet the standard for drinking water and where sufficient confining units existed above and below the injection layers. We then assumed concurrent brineNational assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied in amenable oil reservoirs underlying the onshore and State waters area of the conterminous United States. The assessment also includes estimates of the magnitude of CO2 sGeologic formations and mine locations for potential CO2 mineralization
This geodatabase contains geologic unit boundaries and asbestos site locations shown in "Carbon dioxide mineralization feasibility in the United States" (Blondes and others, 2019). Data was compiled from source material at a scale range of 1:100,000 to 1:5,000,000 and is not intended for any greater detail.USGS Gulf Coast Source Rock Database
The USGS Gulf Coast Source Rock Database (GCSRD) is an online repository for all publicly available source rock data (outcrop and subsurface) from the states of Florida, Georgia, Alabama, Mississippi, Louisiana, Arkansas, and Texas. "Source rock data" are defined in this context as data that include any of the following measured or calculated parameters...