Susan Hough is a scientist in the Earthquake Hazards Program.
Science and Products
Filter Total Items: 97
A study on the effect of site response on California seismic hazard map assessment
Prior studies have repeatedly shown that probabilistic seismic hazard maps from several different countries predict higher shaking than that observed. Previous map assessments have not, however, considered the influence of site response on hazard. Seismologists have long acknowledged the influence of near-surface geology, in particular low-impedance sediment layers, on earthquake ground-motion at
Authors
Molly M. Gallahue, Leah Marschall Salditch, Madeleine C. Lucas, James S. Neely, Seth Stein, Norman A. Abrahamson, Tessa Williams, Susan E. Hough
The 8 April 1860 Jour de Pâques earthquake sequence in southern Haiti
The grave threat posed by the Enriquillo‐Plantain Garden fault zone (EPGFZ) and other fault systems on the Tiburon Peninsula in southern Haiti was highlighted by the catastrophic M 7.0 Léogâne earthquake on 12 January 2010 and again by the deadly M 7.2 Nippes earthquakes on 14 August 2021. Early Interferometric Synthetic Aperture Radar observations suggest the 2021 earthquake broke structures asso
Authors
Stacey Martin, Susan E. Hough
Contributed reports of widely felt earthquakes in California, United States: If they felt it, did they report it?
In a recent study, Hough and Martin (2021) considered the extent to which socioeconomic factors influence the numbers and distribution of contributed reports available to characterize the effects of both historical and recent large earthquakes. In this study I explore the question further, focusing on analysis of widely felt earthquakes near major population centers in northern and southern Califo
Authors
Susan E. Hough
The 6 May 1947 Milwaukee, Wisconsin, earthquake
The State of Wisconsin is not known for earthquake activity. The authoritative public‐facing U.S. Geological Survey Comprehensive Catalog of earthquakes includes only three small (magnitude < 2) earthquakes in the state, all instrumentally recorded. Although other catalogs include more events in Wisconsin, experience has shown that many types of events, such as explosions and cryoseisms, have made
Authors
Susan E. Hough
Which earthquake accounts matter?
Earthquake observations contributed by human observers provide an invaluable source of information to investigate both historical and modern earthquakes. Commonly, the observers whose eyewitness accounts are available to scientists are a self‐selected minority of those who experience a given earthquake. As such these may not be representative of the overall population that experienced shaking from
Authors
Susan E. Hough, Stacey S. Martin
The normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence
The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal‐faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent plate bounda
Authors
Egill Hauksson, Brian J. Olsen, Alex R. R. Grant, Jennifer R Andrews, Angela I. Chung, Susan E. Hough, Hiroo Kanamori, Sara McBride, Andrew J. Michael, Morgan T. Page, Zachary E. Ross, Deborah Smith, Sotiris Valkaniotis
Revisiting California’s past great earthquakes and long-term earthquake rate
In this study, we revisit the three largest historical earthquakes in California—the 1857 Fort Tejon, 1872 Owens Valley, and 1906 San Francisco earthquakes—to review their published moment magnitudes, and compare their estimated shaking distributions with predictions using modern ground‐motion models (GMMs) and ground‐motion intensity conversion equations. Currently accepted moment magnitude estim
Authors
Susan E. Hough, Morgan T. Page, Leah Salditch, Molly M. Gallahue, Madeleine C. Lucas, James S. Neely, Seth Stein
EERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake Sequence began the morning of 4 July 2019 with an M6.4 earthquake at 10:33 a.m., closely following several small foreshocks. The epicenter of this event was roughly 11 miles (18 km) east-northeast of Ridgecrest (Figure 1) within the Naval Air Weapons Station China Lake (NAWS-CL). Seismic and geologic data established that the M6.4 earthquake occurred primarily along a ste
Authors
EERI Learning from Earthquakes Program, Katherine Scharer
The 1933 Long Beach Earthquake (California, USA): Ground motions and rupture scenario
We present a synoptic analysis of the ground motions from the 11 March 1933 Mw 6.4 Long Beach, California, earthquake, the largest known earthquake within the central Los Angeles Basin region. Our inferred shaking intensity pattern supports the association of the earthquake with the Newport-Inglewood fault; it further illuminates the concentration of severe damage in the town of Compton, where acc
Authors
Susan E. Hough, Robert Graves
Where was the 31 October 1895, Charleston, Missouri Earthquake?
We revisit the magnitude and location of the 31 October 1895 Charleston, Missouri earthquake, which is widely regarded to be the last MW6 or greater earthquake in the central United States. Although a recent study (Bakun et al., 2003) concluded that this earthquake was located in southern Illinois, over 100 km north of the traditionally inferred location near Charleston, Missouri, our analysis of
Authors
Stacey S. Martin, Susan E. Hough
Poroelastic stress changes associated with primary oil production in the Los Angeles Basin, California
While recent investigations of induced earthquakes have focused on earthquakes associated with wastewater injection and unconventional recovery methods, the potential for earthquakes to be induced by primary production has long been recognized. We use boundary element methods to quantify the predicted geometry and amplitude of stress and strain changes associated with removal of large volumes of f
Authors
Susan E. Hough, Roger Bilham
Science and Products
- Multimedia
- Publications
Filter Total Items: 97
A study on the effect of site response on California seismic hazard map assessment
Prior studies have repeatedly shown that probabilistic seismic hazard maps from several different countries predict higher shaking than that observed. Previous map assessments have not, however, considered the influence of site response on hazard. Seismologists have long acknowledged the influence of near-surface geology, in particular low-impedance sediment layers, on earthquake ground-motion atAuthorsMolly M. Gallahue, Leah Marschall Salditch, Madeleine C. Lucas, James S. Neely, Seth Stein, Norman A. Abrahamson, Tessa Williams, Susan E. HoughThe 8 April 1860 Jour de Pâques earthquake sequence in southern Haiti
The grave threat posed by the Enriquillo‐Plantain Garden fault zone (EPGFZ) and other fault systems on the Tiburon Peninsula in southern Haiti was highlighted by the catastrophic M 7.0 Léogâne earthquake on 12 January 2010 and again by the deadly M 7.2 Nippes earthquakes on 14 August 2021. Early Interferometric Synthetic Aperture Radar observations suggest the 2021 earthquake broke structures assoAuthorsStacey Martin, Susan E. HoughContributed reports of widely felt earthquakes in California, United States: If they felt it, did they report it?
In a recent study, Hough and Martin (2021) considered the extent to which socioeconomic factors influence the numbers and distribution of contributed reports available to characterize the effects of both historical and recent large earthquakes. In this study I explore the question further, focusing on analysis of widely felt earthquakes near major population centers in northern and southern CalifoAuthorsSusan E. HoughThe 6 May 1947 Milwaukee, Wisconsin, earthquake
The State of Wisconsin is not known for earthquake activity. The authoritative public‐facing U.S. Geological Survey Comprehensive Catalog of earthquakes includes only three small (magnitude < 2) earthquakes in the state, all instrumentally recorded. Although other catalogs include more events in Wisconsin, experience has shown that many types of events, such as explosions and cryoseisms, have madeAuthorsSusan E. HoughWhich earthquake accounts matter?
Earthquake observations contributed by human observers provide an invaluable source of information to investigate both historical and modern earthquakes. Commonly, the observers whose eyewitness accounts are available to scientists are a self‐selected minority of those who experience a given earthquake. As such these may not be representative of the overall population that experienced shaking fromAuthorsSusan E. Hough, Stacey S. MartinThe normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence
The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal‐faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent plate boundaAuthorsEgill Hauksson, Brian J. Olsen, Alex R. R. Grant, Jennifer R Andrews, Angela I. Chung, Susan E. Hough, Hiroo Kanamori, Sara McBride, Andrew J. Michael, Morgan T. Page, Zachary E. Ross, Deborah Smith, Sotiris ValkaniotisRevisiting California’s past great earthquakes and long-term earthquake rate
In this study, we revisit the three largest historical earthquakes in California—the 1857 Fort Tejon, 1872 Owens Valley, and 1906 San Francisco earthquakes—to review their published moment magnitudes, and compare their estimated shaking distributions with predictions using modern ground‐motion models (GMMs) and ground‐motion intensity conversion equations. Currently accepted moment magnitude estimAuthorsSusan E. Hough, Morgan T. Page, Leah Salditch, Molly M. Gallahue, Madeleine C. Lucas, James S. Neely, Seth SteinEERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake Sequence began the morning of 4 July 2019 with an M6.4 earthquake at 10:33 a.m., closely following several small foreshocks. The epicenter of this event was roughly 11 miles (18 km) east-northeast of Ridgecrest (Figure 1) within the Naval Air Weapons Station China Lake (NAWS-CL). Seismic and geologic data established that the M6.4 earthquake occurred primarily along a steAuthorsEERI Learning from Earthquakes Program, Katherine ScharerThe 1933 Long Beach Earthquake (California, USA): Ground motions and rupture scenario
We present a synoptic analysis of the ground motions from the 11 March 1933 Mw 6.4 Long Beach, California, earthquake, the largest known earthquake within the central Los Angeles Basin region. Our inferred shaking intensity pattern supports the association of the earthquake with the Newport-Inglewood fault; it further illuminates the concentration of severe damage in the town of Compton, where accAuthorsSusan E. Hough, Robert GravesWhere was the 31 October 1895, Charleston, Missouri Earthquake?
We revisit the magnitude and location of the 31 October 1895 Charleston, Missouri earthquake, which is widely regarded to be the last MW6 or greater earthquake in the central United States. Although a recent study (Bakun et al., 2003) concluded that this earthquake was located in southern Illinois, over 100 km north of the traditionally inferred location near Charleston, Missouri, our analysis ofAuthorsStacey S. Martin, Susan E. HoughPoroelastic stress changes associated with primary oil production in the Los Angeles Basin, California
While recent investigations of induced earthquakes have focused on earthquakes associated with wastewater injection and unconventional recovery methods, the potential for earthquakes to be induced by primary production has long been recognized. We use boundary element methods to quantify the predicted geometry and amplitude of stress and strain changes associated with removal of large volumes of fAuthorsSusan E. Hough, Roger Bilham - News