Skip to main content
U.S. flag

An official website of the United States government

South Carolina StreamStats

StreamStats for South Carolina was developed in cooperation with the South Carolina Department of Transportation.

StreamStats for South Carolina can be used to estimate the magnitude of peak flows for South Carolina under natural and urban streamflow conditions at the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2- percent annual exceedance probabilities. The reports below present the equations used to estimate the flow statistics, describe the uncertainty associated with the estimates, and describe the methods used to develop the equations and to measure the basin characteristics used in the equations. Users should familiarize themselves with the reports before using StreamStats to obtain estimates of streamflow statistics for ungaged sites.

Click below to view foundational layers and metadata for the South Carolina application, as well as specific sources and computation methods for basin characteristics:



StreamStats outputs for ungaged sites provide estimates of both rural and urban peak flows. Use of the urban peak-flow estimates is most appropriate when impervious areas are 10 percent or more. In basins with impervious areas of less than 10 percent, the computed urban peak flow may be less than the computed rural peak flow. It is left to the discretion of each user, based on hydrologic judgment and knowledge of the area, to decide which computed peak flow to use.  The rural and urban equations are only applicable to basins not affected substantially by regulation from impoundments, tidal effects, channelization, levees, or other man-made structures.

Users are cautioned against using the equations outside of the ranges of values of the independent variables used to develop the equations, as potential errors are unknown in these cases. For the rural equations (Feaster and others, 2009), the range in drainage area is from 1 to 9,000 square miles. Impervious areas for streamgages used to develop the rural equations generally were less than 10 percent. For the urban and small, rural equations (Feaster and others, 2014), the range of applicable drainage area across all five hydrologic regions is from 0.10 to 459 square miles, and the range of impervious areas is from 0.0 to 47.9 percent. Table 11 in Feaster and others (2014), should be consulted for the ranges specific to each hydrologic region.

The South Carolina StreamStats application was developed from the best available elevation data for South Carolina. Light Detection and Ranging (LiDAR) derived digital elevation models (DEMs) at 30-foot post spacing were used as the basis for basin delineation and derivative topographic basin characteristics. The high-resolution elevation data provides an opportunity to provide the most accurate results from StreamStats for a variety of scientific applications.

The South Carolina LiDAR Consortium, sphere headed by the South Carolina Department of Natural Resources and consisting of numerous state, federal, and local government entities in South Carolina, began collecting LiDAR in 2007.  When work started on the South Carolina StreamStats project in 2014, both LiDAR-derived elevation and, with the exception of Georgetown County, hydrography data were available for the entire state at a 10-foot resolution.  The LiDAR-derived elevation data was resampled to 30-foot resolution, while hydrography data were kept at their original 10-foot resolution. Where LiDAR-derived products are not available, and for portions of the study area outside South Carolina, StreamStats is implemented by using LiDAR-based topographic data from the USGS 3D Elevation Program and the best-available hydrography, which at the time of development in 2018 was 1:24,000-scale National Hydrography Dataset (NHD). The local-resolution and 1:24,000-scale NHD were appended to make a continuous streams layer for the entire State and contributing watersheds of adjacent States.

The StreamStats application interfaces with the DEMs and the most current regional streamflow regression equations and datasets of landscape characteristics. Basin characteristics, such as rainfall data, topographic variables (such as slope and drainage area), and 2001, 2006, and 2011 National Land-Cover Datasets (NLCD) also are incorporated in the South Carolina StreamStats application.

Click on this link to obtain general information on the South Carolina application, as well as specific sources and computation methods for basin characteristics.