Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2148

U.S. Geological Survey coastal plain amplification virtual workshop

In early October of 2020, the U.S. Geological Survey (USGS) held a virtual workshop to discuss Gulf and Atlantic Coastal Plains site-response models. Earthquake researchers came together to assess (1) research related to proposed Coastal Plains amplification models and (2) USGS plans for implementing these models. Presentations spanned a broad range of topics from Atlantic and Gulf Coastal Plains
Authors
Oliver S. Boyd, Thomas L. Pratt, Martin C. Chapman, Allison Shumway, Sanaz Rezaeian, Morgan P. Moschetti, Mark D. Petersen

Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions

Acoustic energy originating from explosions, sonic booms, bolides and thunderclaps have been recorded on seismometers since the 1950s. Direct pressure loading from the passing acoustic wave has been modelled and consistently observed to produce ground deformations of the near surface that have retrograde elliptical particle motions. In the past decade, increased deployments of colocated seismomete
Authors
Robert E. Anthony, Josh Watzak, Adam T. Ringler, David C. Wilson

Enumerating plausible multifault ruptures in complex fault systems with physical constraints

We propose a new model for determining the set of plausible multifault ruptures in an interconnected fault system. We improve upon the rules used in the Third Uniform California Earthquake Rupture Forecast (UCERF3) to increase connectivity and the physical consistency of ruptures. We replace UCERF3’s simple azimuth change rules with new Coulomb favorability metrics and increase the maximum jump di
Authors
Kevin R. Milner, Bruce E. Shaw, Edward H. Field

Mapping a magnetic superstorm: March 1989 geoelectric hazards and impacts on United States power systems

A study is made of the relationships between geomagnetic and geoelectric field variation, Earth-surface impedance, and operational interference (anomalies) experienced on electric-power systems across the contiguous United States during the March 13-14, 1989 magnetic storm. For this, a 1-minute-resolution sequence of geomagnetic field maps is constructed from magnetometer time series acquired at g
Authors
Jeffrey J. Love, Greg M. Lucas, E. Joshua Rigler, Benjamin Scott Murphy, Anna Kelbert, Paul A. Bedrosian

Luminescence sediment tracing reveals the complex dynamics of colluvial wedge formation

Paleoearthquake studies that inform seismic hazard rely on assumptions of sediment transport that remain largely untested. Here, we test a widespread conceptual model and a new numerical model on the formation of colluvial wedges, a key deposit used to constrain the timing of paleoearthquakes. We perform this test by applying luminescence, a sunlight-sensitive sediment tracer, at a field site disp
Authors
Harrison J. Gray, Christopher DuRoss, Sylvia Nicovich, Ryan D. Gold

Constructing a large-scale landslide database across heterogeneous environments using task-specific model updates

Preparation and mitigation efforts for widespread landslide hazards can be aided by a large-scale, well-labeled landslide inventory with high location accuracy. Recent smallscale studies for pixel-wise labeling of potential landslide areas in remotely-sensed images using deep learning (DL) showed potential but were based on data from very small, homogeneous regions with unproven model transferabil
Authors
Savinay Nagendra, Daniel Kifer, Benjamin B. Mirus, Te Pei, Kathryn Lawson, Srikanth Banagere Manjunatha, Weixin Li, Hien Nguyen, Tong Qiu, Sarah Tran, Chaopeng Shen

New model of the Barry Arm landslide in Alaska reveals potential tsunami wave heights of 2 meters, values much lower than previously estimated

The retreat of Barry Glacier has contributed to the destabilization of slopes in Barry Arm, creating the possibility that a landslide could rapidly enter the fjord and trigger a tsunami.The U.S. Geological Survey (USGS) recently released a report documenting potential tsunami wave heights in the event of a large, fast-moving landslide at the Barry Arm fiord near Prince William Sound, Alaska (Barnh
Authors
Marísa A. Macías, Katherine R. Barnhart, Dennis M. Staley

S/P amplitude ratios derived from single-component seismograms and their potential use in constraining focal mechanisms for micro-earthquake sequences

Focal mechanisms, which reflect the sense of slip in earthquakes, provide important constraints for understanding crustal tectonics and earthquake source physics, including the interactions among earthquakes during mainshock–aftershock sequences or seismic swarms. Focal mechanisms of small (magnitude ≲3.5) earthquakes are usually determined by first‐motion P‐wave polarities, sometimes supplemented
Authors
David R. Shelly, Robert John Skoumal, Jeanne L. Hardebeck

Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga

The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed prop
Authors
Robin S. Matoza, David Fee, Jelle D. Assink, Alexandra M. Iezzi, David N. Green, Keehoon Kim, Liam Toney, Thomas Lecocq, Siddharth Krishnamoorthy, Jean-Marie Lalande, Kiwamu Nishida, Kent L. Gee, Matthew M. Haney, Hugo D. Ortiz, Quentin Brissaud, Léo Martire, Lucie Rolland, Panagiotis Vergados, Alexandra Nippress, Junghyun Park, Shahar Shani-Kadmiel, Alex Witsil, Stephen Arrowsmith, Corentin Caudron, Shingo Watada, Anna Perttu, Benoit Taisne, Pierrick Mialle, Alexis Le Pichon, Julien Vergoz, Patrick Hupe, Philip S. Blom, Roger M. Waxler, Silvio De Angelis, Jonathan Snively, Adam T. Ringler, Robert E. Anthony, Arthur Din Jolly, Geoff Kilgour, Gil Averbuch, Maurizio Ripepe, Mie Ichihara, Alejandra Arciniega-Ceballos, Elvira Astafyeva, Lars Ceranna, Sandrine Cevuard, Il-Young Che, Rodrigo de Negri Leiva, Carl W. Ebeling, Läslo G. Evers, Luis E. Franco-Marin, Tom Gabrielson, Katrin Hafner, R. Giles Harrison, Attila Komjathy, Giorgio Lacanna, John J. Lyons, Kenneth A. Macpherson, Emanuele Marchetti, Kathleen McKee, Rob Mellors, Gerardo Mendo-Pérez, T. Dylan Mikesell, Edhah Munaibari, Mayra Oyola-Merced, Iseul Park, Christoph Pilger, Cristina Ramos, Mario Ruiz, Roberto Sabatini, Hans Schwaiger, Dorianne Tailpied, Carrick Talmadge, Jérôme Vidot, Jeremy Webster, David C. Wilson

A progressive flow-routing model for rapid assessment of debris-flow inundation

Debris flows pose a significant hazard to communities in mountainous areas, and there is a continued need for methods to delineate hazard zones associated with debris-flow inundation. In certain situations, such as scenarios following wildfire, where there could be an abrupt increase in the likelihood and size of debris flows that necessitates a rapid hazard assessment, the computational demands o
Authors
Alexander Gorr, Luke A. McGuire, Ann Youberg, Francis K. Rengers

Classifying Worldwide Standardized Seismograph Network records using a simple convolution neural network

The U.S. Geological Survey (USGS) maintains an archive of 189,180 digitized scans of analog seismic records from the World‐Wide Standardized Seismograph Network (WWSSN). Although these scans have been made public, the archive is too large to manually review, and few researchers have utilized large numbers of these records. To facilitate further research using this historical dataset, we develop a
Authors
Nagle Nagle-McNaughton, Adam T. Ringler, Robert E. Anthony, Alexis Casondra Bianca Alejandro, David C. Wilson, Justin Thomas Wilgus

Microtremor array method using spatial autocorrelation analysis of Rayleigh‑wave data

Microtremor array measurements (MAM) and passive surface wave methods in general, have been increasingly used to non-invasively estimate shear-wave velocity structures (Vs) for various purposes. The methods estimate dispersion curves and invert them for retrieving S-wave velocity profiles. This paper summarizes principles, limitations, data collection and processing methods. It intends to enable s
Authors
Koichi Hayashi, Michael W. Asten, William J. Stephenson, Cécile Cornou, Manuel Hobiger, Marco Pilz, Hiroaki Yamanaka