Critical Resources
Critical Resources
Filter Total Items: 33
Evaluation of Critical Elements in Carbonatites
The project objective is to determine the processes responsible for critical element enrichment in carbonatites and to enhance our ability to identify and assess economic deposits. This project will work at various scales to meet this objective and will primarily focus on deposits within the US or our Critical Minerals Mapping Initiative collaborative Nations Canada and Australia.
Geophysics of Precambrian Terranes, Upper Midwest and Rocky Mountains
The project objective is to provide follow-up geophysical ground data acquisition and interpretation for areas involving Precambrian geologic settings in the Upper Midwest and Rocky Mountains. The project is designed fill gaps and to complement the high-quality aeromagnetic acquired during the USGS Earth Mapping Resources Initiative (Earth MRI).
Geophysics of the Midcontinent Rift Region
The Midcontinent Rift system and surrounding Precambrian rocks are known to host highly significant mineral resources. Our project objectives are to increase understanding of this system through the integration of new and legacy geophysical data with geochemical and borehole data, map the lithology and structure of PreCambrian rocks, and develop an integrated 3D geologic model of the region.
Non-Traditional Stable Isotopes
Understanding the genesis of ore deposits and their behavior in the environment is a subject of great importance to the Nation. A relatively new tool to aid in these efforts to investigate the origin and environmental effects of ore deposits is the use of "heavy" metal stable isotopes. Our research objectives are to utilize various isotopic systems to advance our understanding of ore genesis and...
Critical Elements in Carbonatites: From Exploration Targets to Element Distribution
Critical elements are essential to the modern economy and have potential supply chain disruptions, but compared to most base and precious metals, little work has been done in understanding ore-grade enrichments. Carbonatites are the primary source of the worlds light rare earth elements and niobium, and a potential source for heavy rare earths, scandium, tantalum, and thorium. Project objectives...
Lithium from Source to Sink: Genesis and Evolution of Li Brines and Clays
The purpose of this project is to trace the lithium (Li) geochemical cycle in the Great Basin, with an emphasis on the pathways that lead to the development of lithium clay and brine resources.
Unconventional Stratabound Critical Mineral Deposits of the Midcontinent: Linkages Between Mineralization in Marine Epicontinental Sedimentary Basin Systems
This project will evaluate and characterize the critical mineral potential of midcontinent stratabound "Bathtub Rim" deposits for rare earth elements, cobalt, lithium, and associated critical mineral prospectivity and to develop and test new ore genesis models.
Geochemical Signatures and Environmental Impacts of Ore and Trace Mineralization in the Southern Midcontinent
The overall project objective is a comprehensive analysis of the natural and anthropogenic consequences of extensive ore and trace mineralization in the southern midcontinent of the U.S. with a focus on Missouri. This will be conducted at two scales: 1) landscape and 2) process-level. 1) Landscape scale using geospatial and machine learning techniques to combine multiple geochemical and geologic...
Critical Mineral Resources in Heavy Mineral Sands of the U.S. Atlantic Coastal Plain
In many parts of the southeastern U.S., dark-colored sands can be seen at beaches or beneath soil. These sands contain titanium, zirconium, and rare earth elements, which are considered critical mineral resources. Such sands are present in areas from the coast to a hundred miles or more inland beneath soil within the Atlantic Coastal Plain Province. In some locales they are concentrated enough to...
Mineville, Eastern Adirondacks – Geophysical and Geologic Studies
The USGS is using a set of advanced imaging and analysis tools to study the rocks within the eastern Adirondacks of upstate New York. The goal of these studies is to gain a better understanding of the geology and mineral resources in the area.
Magmas to Metals: Melt Inclusion Insights into the Formation of Critical Element-Bearing Ore Deposits
This project applies innovative melt inclusion and mineralogical techniques to characterize several distinctive magma types occurring together with prodigious, critical rare earth elements (REE) and gold-(antimony-tellurium) ore deposits within the U.S. We will characterize the pre-eruptive/pre-emplacement magmatic conditions in several districts. The goal is to determine the role of magmatism in...
Sources, Forms, Extractability of Metals in Non-Ore Deposit Sources
This project explored potential recovery and environmental consequences of metals in mining and mineral processing wastes as a function of ore deposit geology, and in debris from demolished or burned buildings.