Skip to main content
U.S. flag

An official website of the United States government

Sediment Transport

Filter Total Items: 26

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
link

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
Learn More

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
link

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
Learn More

Coastal Climate Impacts

The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...
link

Coastal Climate Impacts

The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...
Learn More

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.
link

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.
Learn More

Reef Hydrodynamics and Sediment Processes

As part of the USGS Coral Reef Project, the overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs and their adjacent coastlines.
link

Reef Hydrodynamics and Sediment Processes

As part of the USGS Coral Reef Project, the overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs and their adjacent coastlines.
Learn More

Landscape Response to Disturbance

This project characterizes and measures sediment-related effects of landscape disturbances (such as major storms, drought, or wildfire) and river management. We focus primarily on the U.S. west coast, and our work relates to natural hazards and resource management.
link

Landscape Response to Disturbance

This project characterizes and measures sediment-related effects of landscape disturbances (such as major storms, drought, or wildfire) and river management. We focus primarily on the U.S. west coast, and our work relates to natural hazards and resource management.
Learn More

Coastal Habitats in Puget Sound

A Pacific Northwest icon, Puget Sound is the second-largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to growth in human population and urbanization. This growth has played a role in degrading the Sound...
link

Coastal Habitats in Puget Sound

A Pacific Northwest icon, Puget Sound is the second-largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to growth in human population and urbanization. This growth has played a role in degrading the Sound...
Learn More

Using Video Imagery to Study Coastal Change: Santa Cruz Beaches

Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.
link

Using Video Imagery to Study Coastal Change: Santa Cruz Beaches

Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.
Learn More

Climate impacts on Monterey Bay area beaches

For beach towns around Monterey Bay, preserving the beaches by mitigating coastal erosion is vital. Surveys conducted now and regularly in the future will help scientists understand the short- and long-term impacts of climate change, El Niño years, and sea-level rise on a populated and vulnerable coastline.
link

Climate impacts on Monterey Bay area beaches

For beach towns around Monterey Bay, preserving the beaches by mitigating coastal erosion is vital. Surveys conducted now and regularly in the future will help scientists understand the short- and long-term impacts of climate change, El Niño years, and sea-level rise on a populated and vulnerable coastline.
Learn More

Transport of invasive microorganisms

The objectives of his project are to investigate the vectors and timing of microbiological invasions and the subsequent dispersal of these non-native organisms due to sediment transport. We will attempt to confirm the identification of specific invasives encountered with molecular sequencing, monitor the spread of the invading populations through their recent distribution and the historic...
link

Transport of invasive microorganisms

The objectives of his project are to investigate the vectors and timing of microbiological invasions and the subsequent dispersal of these non-native organisms due to sediment transport. We will attempt to confirm the identification of specific invasives encountered with molecular sequencing, monitor the spread of the invading populations through their recent distribution and the historic...
Learn More

Sediment transport in submarine canyons

Objectives: Produce a step-change in understanding of submarine turbidity currents by measuring their two key features (synchronous velocity and concentration profiles) in detail (every 2-to-30 seconds) for the first time, and documenting spatial changes in their flow velocity from source-to-sink for the first time.
link

Sediment transport in submarine canyons

Objectives: Produce a step-change in understanding of submarine turbidity currents by measuring their two key features (synchronous velocity and concentration profiles) in detail (every 2-to-30 seconds) for the first time, and documenting spatial changes in their flow velocity from source-to-sink for the first time.
Learn More
link

Drag and sediment transport: conditions at the bottom boundary

Research on bed sediment grain size, bedform morphology, vegetation characteristics, and sediment resuspension and transport.
Learn More