Sea-Level Rise and Climate Change Impacts to Reefs
Learn how the USGS studies sea-level rise and climate change impacts to coral reefs.

This study is part of the USGS Coral Reef Project.
The Problem
There is a growing body of evidence indicating that the rate of sea-level rise has increased relative to the past century and will continue to increase in the 21st century; that evidence has recently been summarized by the Intergovernmental Panel on Climate Change (IPCC). If all aspects of reef morphology—colony size and shape, cross-reef relief, surface rugosity, and so on—keep pace with the rising sea levels, then it is likely that changes in depth-controlled physical processes will be minimal to non-detectible. However, based on rates of vertical reef accretion in Hawaiʻi and throughout the Pacific (which are an order of magnitude smaller than predicted rates of sea-level rise), it is unlikely that reefs there and other locations will keep pace, and their inability to do so will lead to subtle but important changes in selected physical processes on some coral reefs.

In addition, recent studies indicate the flux of submarine groundwater discharge from land to coral reefs in Hawaiʻi and other high islands is substantial, and often significantly colder and enriched in terrestrial-derived nutrients than surrounding seawater. Ecosystem functions of submarine groundwater discharge to coral reef ecosystems are not quantified but can be hypothesized to (1) buffer thermal stress (bleaching) in corals experiencing warming, and (2) supply nutrients to otherwise oligotrophic coastal waters. While an excess of the latter has been observed to cause complete phase shifts in the form of wholesale loss of coral and replacement by macroalgae, the role of the former has not been tested. Both may be significantly altered by impending climate change and proposed land use that alter groundwater quantity, quality, flux, composition, and fate, especially in rapidly developing areas. This effort is focused on submarine groundwater discharge, its role in shaping coral reef ecosystem structure, and the ecosystem services it provides.
The Approach
The overall objective of this research effort is to better understand how climate change may impact coral reefs. Achievement of this objective requires an understanding of the physical parameters driving change in coral reefs and the resulting ecosystem processes. The goals of this effort are to:
- How will reefs respond to rapid sea-level rise at a decadal time-scale?
- How will increased wave energy and altered circulation across reefs affect circulation and sediment, nutrient, contaminant, and larval dynamics?
- Do thresholds exist in the rate of sea-level rise that would push a reef ecosystem from a state of stability to one of net loss?
- How may changes in precipitation, recharge, and human-induced withdraws impact submarine groundwater discharge to the coastal zone?
- How will coral reefs respond to variations in submarine groundwater discharge predicted to occur due to climate change?

The approach to these interdisciplinary studies will rely on a combination of field measurements and physics-based numerical monitoring. We use a wide range of tools to try to answer these questions, including: oceanographic instruments (for example, acoustic Doppler current profilers, wave/tide gauges, temperature sensors, salinity sensors, chemical sensors) mounted on the seabed or on moorings, water-column profilers with similar suites of sensors, coral cores, geophysical water-column and sub-bottom surveys, and physics-based numerical models.
Below are data releases associated with this project.
Modeled effects of depth and semidiurnal temperature fluctuations on predictions of year that coral reef locations reach annual severe bleaching for various global climate model projections
Coral reef profiles for wave-runup prediction
Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts
Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands
Physics-based numerical model simulations of wave propagation over and around theoretical atoll and island morphologies for sea-level rise scenarios
Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands,
HyCReWW database: A hybrid coral reef wave and water level metamodel
Below are publications associated with this study.
Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming
The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts
Hydro-morphological characterization of coral reefs for wave runup prediction
Pulse sediment event does not impact the metabolism of a mixed coral reef community
Assessing morphologic controls on atoll island alongshore sediment transport gradients due to future sea-level rise
HyCReWW: A hybrid coral reef wave and water level metamodel
Physical mechanisms influencing localized patterns of temperature variability and coral bleaching within a system of reef atolls
A 50-year Sr/Ca time series from an enclosed, shallow-water Guam coral: In situ monitoring and extraction of a temperature trend, annual cycle, and ENSO and PDO signals
Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding
Carbonate system parameters of an algal-dominated reef along west Maui
Challenges of forecasting flooding on coral reef–lined coasts
A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts
Learn how the USGS studies sea-level rise and climate change impacts to coral reefs.

This study is part of the USGS Coral Reef Project.
The Problem
There is a growing body of evidence indicating that the rate of sea-level rise has increased relative to the past century and will continue to increase in the 21st century; that evidence has recently been summarized by the Intergovernmental Panel on Climate Change (IPCC). If all aspects of reef morphology—colony size and shape, cross-reef relief, surface rugosity, and so on—keep pace with the rising sea levels, then it is likely that changes in depth-controlled physical processes will be minimal to non-detectible. However, based on rates of vertical reef accretion in Hawaiʻi and throughout the Pacific (which are an order of magnitude smaller than predicted rates of sea-level rise), it is unlikely that reefs there and other locations will keep pace, and their inability to do so will lead to subtle but important changes in selected physical processes on some coral reefs.

In addition, recent studies indicate the flux of submarine groundwater discharge from land to coral reefs in Hawaiʻi and other high islands is substantial, and often significantly colder and enriched in terrestrial-derived nutrients than surrounding seawater. Ecosystem functions of submarine groundwater discharge to coral reef ecosystems are not quantified but can be hypothesized to (1) buffer thermal stress (bleaching) in corals experiencing warming, and (2) supply nutrients to otherwise oligotrophic coastal waters. While an excess of the latter has been observed to cause complete phase shifts in the form of wholesale loss of coral and replacement by macroalgae, the role of the former has not been tested. Both may be significantly altered by impending climate change and proposed land use that alter groundwater quantity, quality, flux, composition, and fate, especially in rapidly developing areas. This effort is focused on submarine groundwater discharge, its role in shaping coral reef ecosystem structure, and the ecosystem services it provides.
The Approach
The overall objective of this research effort is to better understand how climate change may impact coral reefs. Achievement of this objective requires an understanding of the physical parameters driving change in coral reefs and the resulting ecosystem processes. The goals of this effort are to:
- How will reefs respond to rapid sea-level rise at a decadal time-scale?
- How will increased wave energy and altered circulation across reefs affect circulation and sediment, nutrient, contaminant, and larval dynamics?
- Do thresholds exist in the rate of sea-level rise that would push a reef ecosystem from a state of stability to one of net loss?
- How may changes in precipitation, recharge, and human-induced withdraws impact submarine groundwater discharge to the coastal zone?
- How will coral reefs respond to variations in submarine groundwater discharge predicted to occur due to climate change?

The approach to these interdisciplinary studies will rely on a combination of field measurements and physics-based numerical monitoring. We use a wide range of tools to try to answer these questions, including: oceanographic instruments (for example, acoustic Doppler current profilers, wave/tide gauges, temperature sensors, salinity sensors, chemical sensors) mounted on the seabed or on moorings, water-column profilers with similar suites of sensors, coral cores, geophysical water-column and sub-bottom surveys, and physics-based numerical models.
Below are data releases associated with this project.
Modeled effects of depth and semidiurnal temperature fluctuations on predictions of year that coral reef locations reach annual severe bleaching for various global climate model projections
Coral reef profiles for wave-runup prediction
Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts
Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands
Physics-based numerical model simulations of wave propagation over and around theoretical atoll and island morphologies for sea-level rise scenarios
Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands,
HyCReWW database: A hybrid coral reef wave and water level metamodel
Below are publications associated with this study.