Critical Resources
Critical Resources
Filter Total Items: 33
Isotope and Chemical Methods for Mineral and Geoenvironmental Assessments and Support of USGS Science Strategy
The Project objective is to facilitate the full potential of stable isotope (C,H,N,O,S), noble gas isotope (He, Ar, Ne, Ar, Kr, Xe), active gas geochemistry (CO2, H2S, SO2, CH4, HF, HCl, N2, H2, organics, light hydrocarbons), and solute geochemistry measurements of minerals and fluids (including single fluid inclusions) in multidisciplinary studies of fundamental processes that affect mineral...
Systems Approach to Critical Minerals Inventory, Research, and Assessment
This project supports the Earth Mapping Resources Initiative (EarthMRI) by developing a mineral systems approach for defining focus areas. This project is investigating domestic sources of critical minerals in three sequential stages: inventory, research, and assessment. 1) Inventory the abundance of critical minerals in ore, minerals, and processed materials from major deposits in each system...
USMIN Mineral Deposit Database
Our objective is to develop a national-scale, geospatial database that is the authoritative source of the most important mines, mineral deposits, and mineral districts of the United States.
Critical Minerals Mapping Initiative (CMMI)
The USGS, in combination with Geoscience Australia and the Geological Survey of Canada, formed the Critical Minerals Mapping Initiative (CMMI) in 2019 to combine expertise and collaboratively conduct research on critical mineral resources.
Large Magmatic Systems for Minerals
This project continues work on large magmatic systems in the U.S., where critical mineral commodities important to clean energy technologies can be concentrated. Modeling of large mafic intrusion extents will continue, and new geophysical methods will be applied to improve understanding of magmatic systems.
International Integrated Minerals Interpretation
We will publish reports and interpretive papers on existing data from USGS internal mineral resource assessment collaborative work.
From Outcrop to Ions: development and application of in-situ isotope ratio measurements to solve geologic problems
Project objectives are to (1) develop innovative analytical techniques for isotope geochemistry and U-Pb geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and (2) apply these techniques to collaborative research projects of high priority to the Mineral Resources Program, including studies related to the formation of "critical mineral" deposits, and...
Spectroscopy and Hyperspectral Imaging of Critical Mineral Resources
Our project will characterize the primary critical minerals (minerals that contain critical elements in their base structure) that are not yet in the USGS Spectral Library. We propose to increase understanding of the spectral indicators of critical minerals using lab-based studies of hand specimens and drill core, hyperspectral field scanning, and hyperspectral images collected from aircraft.
Source, transport and deposition of critical minerals using trace metal and isotope systematics: Denver High Resolution Laboratory
The project objective is to develop and apply solution and in situ isotopic and trace element methods to emerging research opportunities to gain a better understanding of the processes controlling critical mineral deposits, metal mobility, and other geological inquiries.
Hyperspectral Imaging of Mineral Resources from New and Old Origins: Minerals for the Nation’s Economy and Utilization of Legacy Mine Lands
This project will produce maps of surface mineralogy at 15 m spatial resolution covering the largest contiguous area of hyperspectral imagery that has ever been assembled for the U.S., over 380,000 sq. km. in California and Nevada. We are developing new methods to apply these data to map critical minerals, including minerals critical for battery fabrication, and to evaluate resources available...
21st Century Prospecting: AI-assisted Surveying of Critical Mineral Potential
The USGS Mineral Resources Program entered a partnership with the Defense Advanced Research Project Agency (DARPA). The partnership objective is to accelerate advances in science for understanding critical minerals, assessing unknown resources, and increase mineral security for the Nation so USGS can more efficiently assess critical mineral deposits within the United States.
Evaluation of Critical Elements in Carbonatites
The project objective is to determine the processes responsible for critical element enrichment in carbonatites and to enhance our ability to identify and assess economic deposits. This project will work at various scales to meet this objective and will primarily focus on deposits within the US or our Critical Minerals Mapping Initiative collaborative Nations Canada and Australia.