Skip to main content
U.S. flag

An official website of the United States government

Climate Research and Development Program

The Climate Research and Development (Climate R&D) Program strives to advance the understanding of the physical, chemical, and biological components of the Earth system, the causes and consequences of climate and land use change, and the vulnerability and resilience of the Earth system to such changes.

News

link

Earth Science Matters - Volume 17, Fall 2023

link

Going to Extremes to Uncover the Secrets of Dinosaur's Ponderosa Pine

link

Climate R&D Poster Sessions and Presentations at the 2023 AGU Meeting

Publications

Polar bear's range dynamics and survival in the Holocene

Polar bear (Ursus maritimus) is the apex predator of the Arctic, largely dependent on sea-ice. The expected disappearance of the ice cover of the Arctic seas by the mid 21st century is predicted to cause a dramatic decrease in the global range and population size of the species. To place this scenario against the backdrop of past distribution changes and their causes, we use a fossil dataset to in
Authors
Heikki Seppä, Marit-Solveig Seidenkrantz, Beth Elaine Caissie, Marc Macias Fauria

Upscaling wetland methane emissions from the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model development, network assessment, and budget comparison

Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy cov
Authors
Gavin McNicol, Etienne Fluet-Chouinard, Zutao Ouyang, Sarah Knox, Zhang Zhen, Tuula Aalto, Sheel Bansal, Kuang-Yu Chang, Min Chen, Kyle Delwiche, Sarah Feron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, William Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Yang, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur Desai, Eugenie Euskirchen, Jordan Goodrich, Timothy Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John King, Franziska Koebsch, Randall Kolka, Ken Krauss, Annalea Lohila, Ivan Mammarella, Mats Nilson, Asko Noormets, Walter Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva-Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. Jackson

Estuarine salinity extremes: Using the Coastal Salinity Index to quantify the role of droughts, floods, hurricanes, and freshwater flow alteration

In the face of accelerating climate change, advancing understanding of how extreme climatic events influence estuarine salinities can help to inform resource management. Extreme salinities driven by droughts, hurricanes, floods, and freshwater flow alterations can lead to ecological transformations in estuarine ecosystems. Here, we applied the Coastal Salinity Index (CSI; Conrads and Darby 2017) t
Authors
Laura Feher, Michael Osland, Christopher Swarzenski

Science

Regional Assessment of Drought Impacts on Soils (RADIS)

Soils are the foundation of terrestrial ecosystems. They provide critical services including supplying a substrate and the nutrients necessary for plant growth, retaining moisture from precipitation, filtering contaminants from percolating waters, and acting as a sink of carbon. Healthy soils are key to sustaining both human and ecosystem health. However, global- and regional-scale disturbances...
link

Regional Assessment of Drought Impacts on Soils (RADIS)

Soils are the foundation of terrestrial ecosystems. They provide critical services including supplying a substrate and the nutrients necessary for plant growth, retaining moisture from precipitation, filtering contaminants from percolating waters, and acting as a sink of carbon. Healthy soils are key to sustaining both human and ecosystem health. However, global- and regional-scale disturbances...
Learn More

Did we start the fire? Climate, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
link

Did we start the fire? Climate, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
Learn More

Response of plant, microbial, and soil functions to drought and fire in California

California is experiencing changes in precipitation and wildfire regimes. Longer, hotter fire seasons along with extremes in precipitation are expected to continue. Not only do these disturbances affect the productivity and resilience of ecosystems, they also directly impact human health and wellbeing. Soils hold an immense amount of our terrestrial carbon pool, and the microorganisms and minerals...
link

Response of plant, microbial, and soil functions to drought and fire in California

California is experiencing changes in precipitation and wildfire regimes. Longer, hotter fire seasons along with extremes in precipitation are expected to continue. Not only do these disturbances affect the productivity and resilience of ecosystems, they also directly impact human health and wellbeing. Soils hold an immense amount of our terrestrial carbon pool, and the microorganisms and minerals...
Learn More