Kate Ackerman is a Geologist with the Woods Hole Coastal and Marine Science Center Coastal and Estuarine Dynamics Group.
Education and Certifications
M.S. Geological Sciences, University of South Carolina
B.A. with distinction, Earth Sciences, Boston University
Science and Products
Estuarine Processes, Hazards, and Ecosystems
Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
Integration of National Soil and Wetland Datasets: A Toolkit for Reproducible Calculation and Quality Assessment of Imputed Wetland Soil Properties
Wetland soils are vital to the Nation because of their role in sustaining water resources, supporting critical ecosystems, and sequestering significant concentrations of biologically-produced carbon. The United States has the world’s most detailed continent-scale digital datasets for soils and wetlands, yet scientists and land managers have long struggled with the challenge of integrating these d
Lifespan of Massachusetts salt marsh units
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenario
Geospatial characterization of salt marshes on the Eastern Shore of Virginia
This data release contains coastal wetland synthesis products for the Atlantic-facing Eastern Shore of Virginia (the data release for the Chesapeake Bay-facing portion of the Eastern Shore of Virginia is found here: https://doi.org/10.5066/P997EJYB). Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated
Lifespan of Chesapeake Bay salt marsh units
Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to the
Geospatial characterization of salt marshes in Chesapeake Bay
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding natio
Geospatial Characterization of Salt Marshes for Massachusetts
This data release contains coastal wetland synthesis products for Massachusetts. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding nation
Coastal wetlands of the Blackwater region, Chesapeake Bay, Maryland
This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S.
Development and application of Landsat-based wetland vegetation cover and unvegetated-vegetated marsh ratio (UVVR) for the conterminous United States
Effective management and restoration of salt marshes and other vegetated intertidal habitats require objective and spatially integrated metrics of geomorphic status and vulnerability. The unvegetated-vegetated marsh ratio (UVVR), a recently developed metric, can be used to establish present-day vegetative cover, identify stability thresholds, and quantify vulnerability to open-water conversion ove
Authors
Neil K. Ganju, Brady Couvillion, Zafer Defne, Kate Ackerman
Historical influence of soil and water management on sediment and carbon budgets in the United States
[No abstract available]
Authors
E.T. Sundquist, K.V. Ackerman, R.F. Stallard, N.B. Bliss
Rapid assessment of U.S. forest and soil organic carbon storage and forest biomass carbon sequestration capacity
This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carb
Authors
Eric T. Sundquist, Katherine V. Ackerman, Norman B. Bliss, Josef M. Kellndorfer, Matt C. Reeves, Matthew G. Rollins
RESIS-II: An Updated Version of the Original Reservoir Sedimentation Survey Information System (RESIS) Database
The Reservoir Sedimentation Survey Information System (RESIS) database, originally compiled by the Soil Conservation Service (now the Natural Resources Conservation Service) in collaboration with the Texas Agricultural Experiment Station, is the most comprehensive compilation of data from reservoir sedimentation surveys throughout the conterminous United States (U.S.). The database is a cumulative
Authors
Katherine V. Ackerman, David M. Mixon, Eric T. Sundquist, Robert F. Stallard, Gregory E. Schwarz, David W. Stewart
An introduction to global carbon cycle management
Past and current human activities have fundamentally altered the global carbon cycle. Potential future efforts to control atmospheric CO2 will also involve significant changes in the global carbon cycle. Carbon cycle scientists and engineers now face not only the difficulties of recording and understanding past and present changes but also the challenge of providing information and tools for new m
Authors
Eric T. Sundquist, Katherine V. Ackerman, Lauren Parker, Deborah N. Huntzinger
Comparison of two U.S. power-plant carbon dioxide emissions data sets
Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administrati
Authors
K.V. Ackerman, E.T. Sundquist
Research needs for finely resolved fossil carbon emissions
Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonl
Authors
K. Gurney, W. Ansley, D. Mendoza, G. Petron, G. Frost, J. Gregg, M. Fischer, Diane E. Pataki, K. Ackerman, S. Houweling, K. Corbin, R. Andres, T.J. Blasing
Science and Products
- Science
Estuarine Processes, Hazards, and Ecosystems
Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...Integration of National Soil and Wetland Datasets: A Toolkit for Reproducible Calculation and Quality Assessment of Imputed Wetland Soil Properties
Wetland soils are vital to the Nation because of their role in sustaining water resources, supporting critical ecosystems, and sequestering significant concentrations of biologically-produced carbon. The United States has the world’s most detailed continent-scale digital datasets for soils and wetlands, yet scientists and land managers have long struggled with the challenge of integrating these d - Data
Lifespan of Massachusetts salt marsh units
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarioGeospatial characterization of salt marshes on the Eastern Shore of Virginia
This data release contains coastal wetland synthesis products for the Atlantic-facing Eastern Shore of Virginia (the data release for the Chesapeake Bay-facing portion of the Eastern Shore of Virginia is found here: https://doi.org/10.5066/P997EJYB). Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineatedLifespan of Chesapeake Bay salt marsh units
Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to theGeospatial characterization of salt marshes in Chesapeake Bay
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding natioGeospatial Characterization of Salt Marshes for Massachusetts
This data release contains coastal wetland synthesis products for Massachusetts. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding nationCoastal wetlands of the Blackwater region, Chesapeake Bay, Maryland
This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. - Multimedia
- Publications
Development and application of Landsat-based wetland vegetation cover and unvegetated-vegetated marsh ratio (UVVR) for the conterminous United States
Effective management and restoration of salt marshes and other vegetated intertidal habitats require objective and spatially integrated metrics of geomorphic status and vulnerability. The unvegetated-vegetated marsh ratio (UVVR), a recently developed metric, can be used to establish present-day vegetative cover, identify stability thresholds, and quantify vulnerability to open-water conversion oveAuthorsNeil K. Ganju, Brady Couvillion, Zafer Defne, Kate AckermanHistorical influence of soil and water management on sediment and carbon budgets in the United States
[No abstract available]AuthorsE.T. Sundquist, K.V. Ackerman, R.F. Stallard, N.B. BlissRapid assessment of U.S. forest and soil organic carbon storage and forest biomass carbon sequestration capacity
This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbAuthorsEric T. Sundquist, Katherine V. Ackerman, Norman B. Bliss, Josef M. Kellndorfer, Matt C. Reeves, Matthew G. RollinsRESIS-II: An Updated Version of the Original Reservoir Sedimentation Survey Information System (RESIS) Database
The Reservoir Sedimentation Survey Information System (RESIS) database, originally compiled by the Soil Conservation Service (now the Natural Resources Conservation Service) in collaboration with the Texas Agricultural Experiment Station, is the most comprehensive compilation of data from reservoir sedimentation surveys throughout the conterminous United States (U.S.). The database is a cumulativeAuthorsKatherine V. Ackerman, David M. Mixon, Eric T. Sundquist, Robert F. Stallard, Gregory E. Schwarz, David W. StewartAn introduction to global carbon cycle management
Past and current human activities have fundamentally altered the global carbon cycle. Potential future efforts to control atmospheric CO2 will also involve significant changes in the global carbon cycle. Carbon cycle scientists and engineers now face not only the difficulties of recording and understanding past and present changes but also the challenge of providing information and tools for new mAuthorsEric T. Sundquist, Katherine V. Ackerman, Lauren Parker, Deborah N. HuntzingerComparison of two U.S. power-plant carbon dioxide emissions data sets
Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information AdministratiAuthorsK.V. Ackerman, E.T. SundquistResearch needs for finely resolved fossil carbon emissions
Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonlAuthorsK. Gurney, W. Ansley, D. Mendoza, G. Petron, G. Frost, J. Gregg, M. Fischer, Diane E. Pataki, K. Ackerman, S. Houweling, K. Corbin, R. Andres, T.J. Blasing