The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The headwaters of the Colorado and Gunnison River Basin provide an opportunity to implement the NGWOS in a snowmelt-dominated system in the mountain west.
The USGS Next Generation Water Observing System (NGWOS) is generating integrated data on streamflow, groundwater, evapotranspiration, snowpack, soil moisture, water quality, and water use. When fully implemented, the NGWOS will intensively monitor at least 10 medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers that represent larger regions across the Nation.
The USGS has selected the headwaters of the Colorado and Gunnison River Basin (Upper Colorado River Basin) in central Colorado as its second NGWOS basin. This decision was based on rigorous quantitative ranking of western basins, input from USGS regions and science centers, and feedback from targeted external stakeholders in the west.
The Upper Colorado River Basin is important because nearly all flow in the Colorado River originates in the upper basin states and runoff from the Upper Colorado River Basin is nearly three times that of other basins in the area. Thus, the Upper Colorado River Basin is particularly critical for downstream users.
Long-term drought conditions facing the Upper Colorado region, interstate ramifications of the drought, water-quality issues, stakeholder support, and alignment with Department of Interior and USGS priorities make the Upper Colorado an ideal basin to implement the USGS’s integrated approach to observing, delivering, assessing, predicting, and informing water resource conditions and decisions now and into the future.
An integrated data-to-modeling approach in the Upper Colorado River Basin will help improve regional water prediction in other snowmelt dominated systems in the Rockies and beyond. The approach is useful for addressing issues of both water availability and water quality and for evaluating the effects of both short-term climate perturbation (for example, fire, insect mortality, drought) and long-term climate change.
Water Resources Challenges in the Colorado River Basin
The Colorado River supplies water for more than 40 million people and nearly 5.5 million acres of farmland across the western United States and Mexico. The Colorado River and its main tributaries originate in the mountains of western Wyoming, central Colorado, and northeastern Utah. The large amount of snowmelt that feeds the Upper Colorado is central to water availability throughout the Basin. In 2019, urgent action was required to prevent previously developed rules from potentially reducing Colorado River water allocations to Arizona, Nevada and Mexico due to declining water levels in the two largest reservoirs within the Colorado River Basin—Lake Powell and Lake Mead. A Colorado Drought Contingency Plan was signed in April 2019.
NGWOS Characteristics
- State-of-the-art measurements
- Dense array of sensors at selected sites
- Increased spatial and temporal data coverage of all primary components of the hydrologic cycle
- New monitoring technology testing and implementation
- Improved operational efficiency
- Modernized and timely data storage and delivery
Briefing sheet
Below are other science projects associated with the USGS Next-Generation Water Observing System (NGWOS).
Next Generation Water Observing System (NGWOS)
Integrated Water Science (IWS) Basins
Integrated Water Availability Assessments (IWAAs)
Integrated Water Prediction (IWP)
Integrated Water Availability Assessments: Upper Colorado River Basin
Next Generation Water Observing System: Illinois River Basin
Next Generation Water Observing System: Delaware River Basin
Below are publications associated with the USGS Next-Generation Water Observing System (NGWOS).
Water priorities for the nation—The U.S. Geological Survey next generation water observing system
Water priorities for the Nation—USGS Integrated Water Science basins
Water priorities for the Nation—U.S. Geological Survey Integrated Water Availability Assessments
Below are data or web applications associated with the USGS Next-Generation Water Observing System (NGWOS).
From Snow to Flow (data visualization story)
A majority of the water in the western U.S. comes from snowmelt, but changes in the timing, magnitude, and duration of snowmelt can alter water availability downstream. This data visualization story explores what changing snowmelt means for water in the West, and how new USGS efforts can advance snow science by modeling snowpack and snowmelt dynamics and linking these results to streamflow.
Below are news stories associated with the USGS Next-Generation Water Observing System (NGWOS).
- Overview
The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The headwaters of the Colorado and Gunnison River Basin provide an opportunity to implement the NGWOS in a snowmelt-dominated system in the mountain west.
The USGS Next Generation Water Observing System (NGWOS) is generating integrated data on streamflow, groundwater, evapotranspiration, snowpack, soil moisture, water quality, and water use. When fully implemented, the NGWOS will intensively monitor at least 10 medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers that represent larger regions across the Nation.
The USGS will be installing new monitoring equipment and enhancing existing streamgages in the headwaters of the Colorado and Gunnison River Basin (Upper Colorado River Basin) beginning in 2020, subject to availability of funding. The USGS has selected the headwaters of the Colorado and Gunnison River Basin (Upper Colorado River Basin) in central Colorado as its second NGWOS basin. This decision was based on rigorous quantitative ranking of western basins, input from USGS regions and science centers, and feedback from targeted external stakeholders in the west.
The Upper Colorado River Basin is important because nearly all flow in the Colorado River originates in the upper basin states and runoff from the Upper Colorado River Basin is nearly three times that of other basins in the area. Thus, the Upper Colorado River Basin is particularly critical for downstream users.
Long-term drought conditions facing the Upper Colorado region, interstate ramifications of the drought, water-quality issues, stakeholder support, and alignment with Department of Interior and USGS priorities make the Upper Colorado an ideal basin to implement the USGS’s integrated approach to observing, delivering, assessing, predicting, and informing water resource conditions and decisions now and into the future.
An integrated data-to-modeling approach in the Upper Colorado River Basin will help improve regional water prediction in other snowmelt dominated systems in the Rockies and beyond. The approach is useful for addressing issues of both water availability and water quality and for evaluating the effects of both short-term climate perturbation (for example, fire, insect mortality, drought) and long-term climate change.
Water Resources Challenges in the Colorado River Basin
The Colorado River supplies water for more than 40 million people and nearly 5.5 million acres of farmland across the western United States and Mexico. The Colorado River and its main tributaries originate in the mountains of western Wyoming, central Colorado, and northeastern Utah. The large amount of snowmelt that feeds the Upper Colorado is central to water availability throughout the Basin. In 2019, urgent action was required to prevent previously developed rules from potentially reducing Colorado River water allocations to Arizona, Nevada and Mexico due to declining water levels in the two largest reservoirs within the Colorado River Basin—Lake Powell and Lake Mead. A Colorado Drought Contingency Plan was signed in April 2019.
NGWOS Characteristics
- State-of-the-art measurements
- Dense array of sensors at selected sites
- Increased spatial and temporal data coverage of all primary components of the hydrologic cycle
- New monitoring technology testing and implementation
- Improved operational efficiency
- Modernized and timely data storage and delivery
Briefing sheet
- Science
Below are other science projects associated with the USGS Next-Generation Water Observing System (NGWOS).
Next Generation Water Observing System (NGWOS)
Substantial advances in water science, together with emerging breakthroughs in technical and computational capabilities, have led the USGS to develop a Next Generation Water Observing System (NGWOS). The USGS NGWOS will provide real-time data on water quantity and quality in more affordable and rapid ways than previously possible, and in more locations.Integrated Water Science (IWS) Basins
The U.S. Geological Survey is integrating its water science programs to better address the Nation’s greatest water resource challenges. At the heart of this effort are plans to intensively study at least 10 Integrated Water Science (IWS) basins — medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers — over the next decade. The IWS basins will represent a wide range of...Integrated Water Availability Assessments (IWAAs)
The USGS Integrated Water Availability Assessments (IWAAs) are a multi-extent, stakeholder driven, near real-time census and prediction of water availability for both human and ecological uses at regional and national extents.Integrated Water Prediction (IWP)
The USGS Integrated Water Prediction science program focuses on the development of advanced models for forecasting multiple water quality and quantity attributes including water budgets and components of the water cycle; water use; temperature; dissolved and suspended water constituents, and ecological conditions. It is also developing the cyberinfrastructure and workflows required to implement...Integrated Water Availability Assessments: Upper Colorado River Basin
Integrated Water Availability Assessments examine water supply, use, and availability. Snow from the Upper Colorado River Basin contributes 92% of the natural streamflow to the entire Colorado River Basin. The UCOL IWAAs will improve our understanding of the water budget, status and trends in water quality and ecological conditions, and ecosystem response to changes in climate and human water use.Next Generation Water Observing System: Illinois River Basin
The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The Illinois River Basin provides an opportunity to implement the NGWOS in a system challenged by an...Next Generation Water Observing System: Delaware River Basin
The USGS Next Generation Water Observing System (NGWOS) provides high-fidelity, real-time data on water quantity and quality necessary to support modern water prediction and decision support systems for water emergencies and daily water operations. The Delaware River Basin was the first NGWOS basin, providing an opportunity to implement the program in a nationally important, complex interstate... - Multimedia
- Publications
Below are publications associated with the USGS Next-Generation Water Observing System (NGWOS).
Water priorities for the nation—The U.S. Geological Survey next generation water observing system
The challenges of providing safe and sustainable water supplies for human and ecological uses and protecting lives and property during water emergencies are well recognized. The U.S. Geological Survey (USGS) plays an essential role in meeting these challenges through its observational networks and renowned water science and research activities (National Academies of Science, Engineering, and MedicWater priorities for the Nation—USGS Integrated Water Science basins
The United States faces growing challenges to its water supply, infrastructure, and aquatic ecosystems because of population growth, climate change, floods, and droughts. To help address these challenges, the U.S. Geological Survey Water Resources Mission Area is integrating recent advances in monitoring, research, and modeling to improve assessments of water availability throughout the United StaWater priorities for the Nation—U.S. Geological Survey Integrated Water Availability Assessments
The United States faces growing challenges to its water supply, infrastructure, and aquatic ecosystems because of population growth, climate change, floods and droughts, and aging water delivery systems. To help address these challenges, the U.S. Geological Survey (USGS) Water Resources Mission Area has established new strategic priorities that capitalize on the operational and scientific strength - Web Tools
Below are data or web applications associated with the USGS Next-Generation Water Observing System (NGWOS).
From Snow to Flow (data visualization story)
A majority of the water in the western U.S. comes from snowmelt, but changes in the timing, magnitude, and duration of snowmelt can alter water availability downstream. This data visualization story explores what changing snowmelt means for water in the West, and how new USGS efforts can advance snow science by modeling snowpack and snowmelt dynamics and linking these results to streamflow.
- News
Below are news stories associated with the USGS Next-Generation Water Observing System (NGWOS).