This study provides a method for quantifying changes in the spatial extent of cyanobacterial blooms at local and regional scales using remotely sensed data to determine if bloom occurrence and size are increasing or decreasing for inland water resources.
Cyanobacterial blooms are perceived to be increasing globally during the past few decades, but little quantitative information is available regarding the frequency and severity of blooms to substantiate this perception.
Cyanobacterial blooms result when there is rapid growth or accumulation of cyanobacteria. Under conditions that are not yet fully understood, cyanobacteria can produce toxins that pose a range of potential health risks to humans, pets, livestock and wildlife. Cyanobacterial blooms are sometimes mistakenly referred to as "algal blooms" or "harmful algal blooms" because cyanobacteria were historically classified as blue-green algae and cyanobacteria coexist with and function like algae in aquatic systems.
Consistent, repeatable assessment methods are needed to provide information relevant to understanding actual, as compared to perceived, temporal trends in areas already experiencing blooms as well as in regions not yet affected.
In this study, scientists from the U.S. Environmental Protection Agency (USEPA), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and U.S. Geological Survey (USGS) built on previous studies to develop a robust and repeatable method for examining temporal changes in the spatial extent of cyanobacterial blooms over time. The method developed was used to quantify the surface area of cyanobacterial blooms at both local and regional scales.
An assessment method using Medium Resolution Imaging Spectrometer (MERIS) remotely sensed imagery was developed to quantify the surface area extent of cyanobacterial blooms. The method was evaluated using imagery collected over Florida, Ohio, and California between 2008 and 2012, which coincided with the MERIS continuous full resolution acquisition mode. Temporal changes in the spatial extent of the blooms were quantified for each State and individual management districts in Florida to characterize method performance at local and regional scales, and evaluate changing recreational risk based on World Health Organization guidance values for cyanobacterial abundance.
The spatial extent of cyanobacterial blooms increased in Florida between 2008 and 2012, largely due to increases in high-risk bloom areas. California exhibited a slight decrease in cyanobacterial bloom extent, mainly attributed to lakes in northern California between 2008 and 2012. Ohio (excluding Lake Erie), exhibited little change in bloom surface area across all risk categories between 2008 and 2012. With additional time series data provided by recently launched (2016) and future satellite missions, this approach can enable long-term trend assessments. Quantification of changes in bloom frequency and extent over time is essential to understanding the effect of longer term environmental changes on blooms at local, regional, national, and global scales.
This study is part of a larger effort of the USGS Environmental Health Program to provide information that will help resource managers understand how to effectively minimize potential risks to the health of humans and other organisms exposed to cyanotoxins through recreation, drinking water, and other exposure routes. Being able to evaluate if the spatial extent of cyanobacterial blooms is increasing or decreasing over time provides information for targeting efficient resource allocation in areas where the spatial extent of cyanobacterial blooms is increasing.
This study was supported by the NASA Ocean Biology and Biogeochemistry Program/Applied Science Program (proposal NASA 14-SMDUNSOL14-0001), the USEPA, NOAA, and the USGS Toxic Substances Hydrology Program.
Below are other science projects associated with this project.
Toxins and Harmful Algal Blooms Science Team
Satellite Data Used to Estimate and Rank Cyanobacterial Bloom Magnitude in Florida and Ohio Lakes—Developing Tools to Protect Human and Wildlife Health from Cyanotoxin Exposure
Mixtures of Algal Toxins Present Prior to and After Formation of Visible Algal Blooms—Science to Inform the Timing of Algal Toxin Exposure
Understanding Drivers of Cyanotoxin Production in the Lake Okeechobee Waterway
Algal and Other Environmental Toxins — Lawrence, Kansas
Understanding Associations between Mussel Productivity and Cyanotoxins in Lake Erie
Comparison of Predicted and Measured Pharmaceutical Concentrations in Rivers
New Method Developed to Quantify Spatial Extent of Cyanobacterial Blooms
Satellite Imagery Used to Measure Algal Bloom Frequency—Steps Toward Understanding Exposure Risk
Cyanobacteria from 2016 Lake Okeechobee Harmful Algal Bloom Photo-Documented
Evaluating Linkages Between Algal Toxins and Human Health
Below are data or web applications associated with this project.
Concentrations of Bioactive Organic Contaminants in Water and Sediment and Rates of Contaminant Biodegradation in Sediment at Congaree National Park, USA 2013-15
Below are news stories associated with this project.
- Overview
This study provides a method for quantifying changes in the spatial extent of cyanobacterial blooms at local and regional scales using remotely sensed data to determine if bloom occurrence and size are increasing or decreasing for inland water resources.
A bloom of cyanobacteria near the shore of Milford Lake, Kansas Cyanobacterial blooms are perceived to be increasing globally during the past few decades, but little quantitative information is available regarding the frequency and severity of blooms to substantiate this perception.
Cyanobacterial blooms result when there is rapid growth or accumulation of cyanobacteria. Under conditions that are not yet fully understood, cyanobacteria can produce toxins that pose a range of potential health risks to humans, pets, livestock and wildlife. Cyanobacterial blooms are sometimes mistakenly referred to as "algal blooms" or "harmful algal blooms" because cyanobacteria were historically classified as blue-green algae and cyanobacteria coexist with and function like algae in aquatic systems.
Consistent, repeatable assessment methods are needed to provide information relevant to understanding actual, as compared to perceived, temporal trends in areas already experiencing blooms as well as in regions not yet affected.
In this study, scientists from the U.S. Environmental Protection Agency (USEPA), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and U.S. Geological Survey (USGS) built on previous studies to develop a robust and repeatable method for examining temporal changes in the spatial extent of cyanobacterial blooms over time. The method developed was used to quantify the surface area of cyanobacterial blooms at both local and regional scales.
An assessment method using Medium Resolution Imaging Spectrometer (MERIS) remotely sensed imagery was developed to quantify the surface area extent of cyanobacterial blooms. The method was evaluated using imagery collected over Florida, Ohio, and California between 2008 and 2012, which coincided with the MERIS continuous full resolution acquisition mode. Temporal changes in the spatial extent of the blooms were quantified for each State and individual management districts in Florida to characterize method performance at local and regional scales, and evaluate changing recreational risk based on World Health Organization guidance values for cyanobacterial abundance.
The spatial extent of cyanobacterial blooms increased in Florida between 2008 and 2012, largely due to increases in high-risk bloom areas. California exhibited a slight decrease in cyanobacterial bloom extent, mainly attributed to lakes in northern California between 2008 and 2012. Ohio (excluding Lake Erie), exhibited little change in bloom surface area across all risk categories between 2008 and 2012. With additional time series data provided by recently launched (2016) and future satellite missions, this approach can enable long-term trend assessments. Quantification of changes in bloom frequency and extent over time is essential to understanding the effect of longer term environmental changes on blooms at local, regional, national, and global scales.
This study is part of a larger effort of the USGS Environmental Health Program to provide information that will help resource managers understand how to effectively minimize potential risks to the health of humans and other organisms exposed to cyanotoxins through recreation, drinking water, and other exposure routes. Being able to evaluate if the spatial extent of cyanobacterial blooms is increasing or decreasing over time provides information for targeting efficient resource allocation in areas where the spatial extent of cyanobacterial blooms is increasing.
This study was supported by the NASA Ocean Biology and Biogeochemistry Program/Applied Science Program (proposal NASA 14-SMDUNSOL14-0001), the USEPA, NOAA, and the USGS Toxic Substances Hydrology Program.
- Science
Below are other science projects associated with this project.
Toxins and Harmful Algal Blooms Science Team
The team develops advanced methods to study factors driving algal toxin production, how and where wildlife or humans are exposed to toxins, and ecotoxicology. That information is used to develop decision tools to understand if toxin exposure leads to adverse health effects in order to protect human and wildlife health.Satellite Data Used to Estimate and Rank Cyanobacterial Bloom Magnitude in Florida and Ohio Lakes—Developing Tools to Protect Human and Wildlife Health from Cyanotoxin Exposure
Cyanobacterial bloom magnitude during 2003–11 was quantified and ranked in Florida and Ohio lakes with a newly developed modelling tool that allows for the use of multiple satellite data sources and user-defined thresholds. This tool was designed to identify the magnitude of algal blooms, but one metric alone cannot adequately represent the severity of a bloom of interest in terms of toxicity. The...Mixtures of Algal Toxins Present Prior to and After Formation of Visible Algal Blooms—Science to Inform the Timing of Algal Toxin Exposure
Cyanobacteria with toxin-producing potential, genes indicating an ability for toxin synthesis, or cyanotoxins were present before and after formation of a visible algal bloom in Kabetogama Lake, a popular recreation area in Voyageurs National Park that lies along the border of Minnesota and Canada. The temporal patterns observed in this study indicate that sampling only when there is a visible...Understanding Drivers of Cyanotoxin Production in the Lake Okeechobee Waterway
The U.S. Geological Survey (USGS) and other researchers combined field and laboratory approaches in two studies to understand the factors that drive cyanobacterial bloom development and associated cyanotoxin production in Lake Okeechobee, the St. Lucie River and Estuary, and the Indian River Lagoon in response to the large-scale Lake Okeechobee cyanobacteria bloom in 2016.Algal and Other Environmental Toxins — Lawrence, Kansas
About the Laboratory The Environmental Health Program collaborates with scientists at the Organic Geochemistry Research Laboratory (OGRL) in Lawrence, Kansas, to develop and employ targeted and non-targeted analytical methods for identification and quantitation of known and understudied algal/cyanobacterial toxins. The laboratory contructed in 2019 is a 2,500 square foot modern laboratory facility...Understanding Associations between Mussel Productivity and Cyanotoxins in Lake Erie
Study findings indicate that cyanobacteria and cyanotoxins were not associated with mussel mortality at the concentrations present in Lake Erie during a recent study (2013-15), but mussel growth was lower at sites with greater microcystin concentrations.Comparison of Predicted and Measured Pharmaceutical Concentrations in Rivers
New study evaluated if predicted environmental concentrations (PECs) of pharmaceuticals (based on pharmaceutical usage data, degree of metabolism in humans, removal in wastewater treatment plants (WWTPs), and environmental dilution), reflect actual measured environmental concentrations (MECs) in two rivers of different sizes and demographics.New Method Developed to Quantify Spatial Extent of Cyanobacterial Blooms
This study provides a method for quantifying changes in the spatial extent of cyanobacterial blooms at local and regional scales using remotely sensed data to determine if bloom occurrence and size are increasing or decreasing for inland water resources.Satellite Imagery Used to Measure Algal Bloom Frequency—Steps Toward Understanding Exposure Risk
Study explores the utility and limitations of currently available remotely sensed satellite data for identifying the frequency of algal blooms in the Nation's lakes and reservoirs. This information provides a first step toward the goal of understanding exposure risk to protect the health of humans, pets, livestock, and wildlife.Cyanobacteria from 2016 Lake Okeechobee Harmful Algal Bloom Photo-Documented
New report provides photographic documentation and identification of the cyanobacteria present in Lake Okeechobee, the Caloosahatchee River, and St. Lucie Canal during an extensive algal bloom in 2016.Evaluating Linkages Between Algal Toxins and Human Health
The amino acid β-methylamino-L-alanine (BMAA) is produced by cyanobacteria and has been suggested by human health researchers as a causal factor for degenerative neurological diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinsonism, and dementia. An objective review concluded that this hypothesis is not supported by existing data. - Data
Below are data or web applications associated with this project.
Concentrations of Bioactive Organic Contaminants in Water and Sediment and Rates of Contaminant Biodegradation in Sediment at Congaree National Park, USA 2013-15
Data release including concentrations of bioactive organic contaminants in water and sediment and biodegradation rates of select model contaminants in sediment from Congaree National Park during 2013-15. Chemical analyses for targeted organic analytes include, human-use pharmaceuticals, degradates and metabolites and hormones and organic wastewater indicator compounds. Samples were collected betwe - News
Below are news stories associated with this project.