Filter Total Items: 855
Runout model evaluation based on back-calculation of building damage
We evaluated the ability of three debris-flow runout models (RAMMS, FLO2D and D-Claw) to
predict the number of damaged buildings in simulations of the 9 January 2019 Montecito, California, debris-flow event. Observations of building damage after the event were combined with OpenStreetMap building footprints to construct a database of all potentially impacted buildings. At the estimated event volum
Authors
Katherine R. Barnhart, Jason W. Kean
Distribution of large boulders on the deposit of the West Salt Creek rock avalanche, western Colorado
On May 25, 2014, a 54.5-million cubic meter rock avalanche in the West Salt Creek valley, Mesa County, Colorado, traveled 4.6 kilometers, leaving a deposit that covers about 2.2 square kilometers. To check the particle-size distribution of the deposit for information about the high mobility of the avalanche, we estimated boulder distribution density for the entire deposit by counting 1-meter (m) o
Authors
Adrian C. Lewis, Rex L. Baum, Jeffrey A. Coe
The influence of large woody debris on post-wildfire debris flow sediment storage
Debris flows transport large quantities of water and granular material, such as sediment and wood, and this mixture can have devastating impacts on life and infrastructure. The proportion of large woody debris (LWD) incorporated into debris flows can be enhanced in forested areas recently burned by wildfire, because wood recruitment into channels accelerates in burned forests. In this study, we ex
Authors
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann Youberg, Daniel Cadol, Alexander Gorr, Olivia Joan Andrea Khoury Hoch, Rebecca Beers, Jason W. Kean
The rainfall intensity-duration control of debris flows after wildfire
Increased wildfire activity in the western United States has exposed regional gaps in our understanding of postfire debris-flow generation. To address this problem, we characterized flows in an unstudied area to test the rainfall intensity-duration control of the hazard. Our rainfall measurements and field observations from the northern Sierra Nevada (California, USA) show that debris flows result
Authors
Matthew A. Thomas, Donald N. Lindsay, David B. Cavagnaro, Jason W. Kean, Scott W. McCoy, Andrew Paul Graber
Guidance for parameterizing post-fire hydrologic models with in situ infiltration measurements
Wildfire can alter soil-hydraulic properties, often resulting in an increased prevalence of infiltration-excess overland flow and greater potential for debris-flow hazards. Mini disk tension infiltrometers (MDIs) can be used to estimate soil hydraulic properties, such as field-saturated hydraulic conductivity (Kfs) and wetting front potential (Hf), and their spatial variability following wildfire.
Authors
T. Liu, Luke A. McGuire, Ann Youberg, Alexander N. Gorr, Francis K. Rengers
User needs assessment for postfire debris-flow inundation hazard products
Debris flows are a type of mass movement that is more likely after wildfires, and while existing hazard assessments evaluate the rainfall intensities that are likely to trigger debris flows, no operational hazard assessment exists for identifying the areas where they will run out after initiation. Fifteen participants who work in a wide range of job functions associated with southern California po
Authors
Katherine R. Barnhart, Veronica Romero, Katherine R. Clifford
Prolonged influence of urbanization on landslide susceptibility
Landslides pose a threat to life and infrastructure and are influenced by anthropogenic modifications associated with land development. These modifications can affect susceptibility to landslides, and thus quantifying their influence on landslide occurrence can help design sustainable development efforts. Although landslide susceptibility has been shown to increase following urban expansion, the l
Authors
Tyler Rohan, Eitan Shelef, Benjamin B. Mirus, Tim Coleman
Revising supraglacial rock avalanche magnitudes and frequencies in Glacier Bay National Park, Alaska
The frequency of large supraglacial landslides (rock avalanches) occurring in glacial environments is thought to be increasing due to feedbacks with climate warming and permafrost degradation. However, it is difficult to (i) test this; (ii) establish cause–effect relationships; and (iii) determine associated lag-times, due to both temporal and spatial biases in detection rates. Here we applied the
Authors
William Smith, Stuart A. Dunning, Neil Ross, Jon Telling, Erin K. Bessette-Kirton, Dan H. Shugar, Jeffrey A. Coe, M. Geertsema
Simulating debris flow and levee formation in the 2D shallow flow model D-Claw: Channelized and unconfined flow
Debris flow runout poses a hazard to life and infrastructure. The expansion of human population into mountainous areas and onto alluvial fans increases the need to predict and mitigate debris flow runout hazards. Debris flows on unconfined alluvial fans can exhibit spontaneous self-channelization through levee formation that reduces lateral spreading and extends runout distances compared to unchan
Authors
Ryan P. Jones, Francis K. Rengers, Katherine R. Barnhart, David L. George, Dennis M. Staley, Jason W. Kean
Postfire debris flow hazards—Tips to keep you safe
Often referred to as “mudflows,” debris flows are a type of landslide made up of a rapidly moving mixture of dirt, rocks, trees, and water (and sometimes ash) that start on a hillside and travel downvalley. They can easily overflow channels and severely damage houses, vehicles, or other structures. Areas burned by wildfires are especially susceptible to these hazards, which can be triggered by sto
Authors
Steven Sobieszczyk, Jason W. Kean
Landslides triggered by the 2002 M 7.9 Denali Fault earthquake, Alaska, USA
The 2002 M 7.9 Denali earthquake in Alaska, USA, was the largest inland earthquake in North America in nearly 150 years. The earthquake involved oblique thrusting but mostly strike-slip motion, and faults ruptured the ground surface over 330 km. Fault rupture occurred in a rugged, mountainous, subarctic environment with extensive permafrost and variable glaciation, geology, and groundwater presenc
Authors
William Schulz
Landslides triggered by the August 14, 2021, magnitude 7.2 Nippes, Haiti, earthquake
The August 14, 2021, magnitude 7.2 Nippes, Haiti, earthquake triggered thousands of landslides on the Tiburon Peninsula. The landslides directly caused fatalities and damage and impeded response efforts by blocking roads and causing other infrastructure damage. Adverse effects of the landslides likely will continue for months to years. This report presents an assessment of potential postearthquake
Authors
Sabrina N. Martinez, Kate E. Allstadt, Stephen L. Slaughter, Robert G. Schmitt, Elaine Collins, Lauren N. Schaefer, Sonia Ellison