Skip to main content
U.S. flag

An official website of the United States government

A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a Louisiana salt marsh in the Mississippi River Deltaic Plain

July 4, 2022

The potential for carbon sequestration in coastal wetlands is high due to protection of carbon (C) in flooded soils. However, excessive flooding can result in the conversion of the vegetated wetland to open water. This transition results in the loss of wetland habitat in addition to the potential loss of soil carbon. Thus, in areas experiencing rapid wetland submergence, such as the Mississippi River Delta, coastal wetlands could become a significant source of carbon emissions if land loss is not mitigated. To accurately assess the capacity of wetlands to store (or emit) carbon in dynamic environments, it is critical to understand the fate of soil carbon following the transition from vegetated wetland to open water. We developed a simple soil carbon model representing soil depths to 1 m using the data collected from a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain to predict soil carbon density and stock following the transition from a vegetated salt marsh to an open water pond. While immediate effects of ponding on the distribution of carbon within the 1-m soil profile were apparent, there were no effects of ponding on the overall, integrated, carbon stocks 14 years, following wetland submergence. Rather, the model predicts that soil carbon losses in the first meter will be realized over long periods of time (∼200 years) due to changes in the source of carbon (biomass vs. mineral sediment) with minimal losses through mineralization.

Publication Year 2022
Title A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a Louisiana salt marsh in the Mississippi River Deltaic Plain
DOI 10.1029/2022JG006807
Authors Donald R. Schoolmaster, Camille Stagg, Courtney Creamer, Claudia Laurenzano, Eric Ward, Mark Waldrop, Melissa M. Baustian, Tiong Aw, Sergio Merino, Rachel Katherine Villani, Laura Scott
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research: Biogeosciences
Index ID 70232473
Record Source USGS Publications Warehouse
USGS Organization Alaska Science Center; Geology, Minerals, Energy, and Geophysics Science Center; Wetland and Aquatic Research Center