Eric Ward is a Research Ecologist at WARC in Lafayette, LA.
Eric J. Ward’s research focuses on the links between empirical studies and modeling in physiological and ecosystem ecology. The interpretation of field research and its efficient incorporation into projections of carbon and water cycling in managed and unmanaged ecosystems are critical to understanding ecosystem functions and services in a changing world. Dr. Ward’s current program addresses the effects of management and global change factors on carbon cycling in wetland ecosystems, with a focus on coastal wetlands of the SE United States. He works at a variety of field sites, ranging from freshwater floatant marsh to mangrove forests. He has contributed expertise in model-data synthesis to many collaborative efforts addressing ecosystem function in a changing world, such as his current efforts in the USGS LandCarbon National Assessment and the Powell Center Wetland FLUXNET Synthesis for Methane.
Background
Dr. Ward has been a collaborator in multiple large-scale ecosystem studies and experiments. Before USGS, he worked for Oak Ridge National Laboratory as part of the SPRUCE (Spruce and Peatland Responses Under Changing Environments) experiment, which examined the effects of elevated carbon dioxide levels and whole ecosystem warming on a peatland forest in northern Minnesota. While a post-doctoral fellow at North Carolina State University, he worked on PINEMAP (Pine Integrated Network: Education, Mitigation, and Adaptation Project), a USDA Coordinated Agricultural Project that integrated research, extension, and education to adapt forest management approaches aimed at increasing forest resilience, sustainability and carbon sequestration over the coming decades. During his graduate studies at Duke University, Dr. Ward was part of the Duke FACE (Free Air Carbon Dioxide Enrichment) study, which focused on the effects of rising carbon dioxide levels on forests.
Education
PhD, Duke University, Ecology, 2012
BA, Kenyon College, Biology, 2003
Science and Products
Developing a Decision Support Tool to Inform Louisiana’s Climate Change Adaptation Strategy
Assessing Environmental Stress in Mature Mangrove Stands: Linkages to Nutrient Loading
Wetland Methane Emissions: Functional-type Modeling and Data-driven Parameterization
Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
Critical Coastal Habitats: Sustainability, Restoration and Forecasting
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida
Sap flow, leaf water use efficiency, and partial weather station data to support stand water use modeling by nutrient treatment (N, P) for mangroves of Ding Darling NWR, Sanibel Island, Florida (2019-2020)
Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands
Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019
Simulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
Upscaling wetland methane emissions from the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model development, network assessment, and budget comparison
Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures
Modeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands
Mangroves provide blue carbon ecological value at a low freshwater cost
Causality guided machine learning model on wetland CH4 emissions across global wetlands
A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a Louisiana salt marsh in the Mississippi River Deltaic Plain
Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Wetlands under global change
Summary of wetland carbon and environmental management: Path forward
FLUXNET-CH4: A global, multi-ecosystem database and analysis of methane seasonality from freshwater wetlands
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Restoration of mangrove forest
Science and Products
- Science
Developing a Decision Support Tool to Inform Louisiana’s Climate Change Adaptation Strategy
In 2020, Governor Edwards of Louisiana issued two executive orders: establishing the Climate Initiatives Task Force to develop the state’s first ever Climate Action Plan to reach net zero greenhouse gas emissions by 2050 and to enhance coastal resilience in the state. Louisiana’s coastal wetlands and natural lands are of vital importance not just for hurricane protection, health and wellbeing, and...Assessing Environmental Stress in Mature Mangrove Stands: Linkages to Nutrient Loading
WARC Researchers are comparing tree and root growth, soil CO2 flux, and surface elevation change between fertilized and unfertilized mangrove forests to assess the potential impact of increased nutrient loading and to help rate mangrove stand vulnerability.Wetland Methane Emissions: Functional-type Modeling and Data-driven Parameterization
To better understand the environmental drivers of methane emissions in tidal saltmarsh, tidal freshwater swamp forest, tidal freshwater marsh, and non-tidal freshwater marsh habitats, researchers are collecting observations of CH4 emissions and porewater concentrations at research sites representative of each of these habitats.Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
WARC researchers are working to quantify the impacts of future climate and land use/land cover change on greenhouse gas emissions and reductions.Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
WARC's wetland carbon cycle science team is working to improve model parameterizations and formulations and reduce forecast uncertainty in ecosystem modeling.Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
To ensure successful restoration of coastal wetlands, WARC researchers will measure carbon cycling processes that indicate ecosystem health and sustainability.Critical Coastal Habitats: Sustainability, Restoration and Forecasting
USGS WARC scientists are monitoring both the long- and short-term effects of coastal restoration efforts on ecosystem health in coastal habitats of Louisiana’s Barataria Basin.Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource production, and inf...Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida
Mangroves are forested tidal wetlands that occur in tropical, sub-tropical, and warm temperate coastal regions around the world. Mangroves occupy a significant area of coastlines globally and provide important ecosystem services to humans and wildlife. These services include aesthetic value, storm protection, food provisioning, recreation, critical wildlife habitat, and biological carbon sequestra - Data
Sap flow, leaf water use efficiency, and partial weather station data to support stand water use modeling by nutrient treatment (N, P) for mangroves of Ding Darling NWR, Sanibel Island, Florida (2019-2020)
This study evaluated sap flow of neotropical mangrove species subjected to background nutrient loading, and well as fertilization with either nitrogen or phosphorus, at Ding Darling National Wildlife Refuge (NWR). Data collections were made seasonally to model stand water use by mangrove forests as a metric of ecosystem stress through alteration of water use potential at the stand level. Data on lModeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands
A biogeochemistry model was developed to examine plant gross primary productivity (GPP), net primary productivity (NPP), plant respiration, soil respiration, soil organic carbon sequestration rate and storage under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019
This dataset provides the water content, bulk density, carbon concentrations, nitrogen concentrations, and carbon content of all fourteen cores sampled in coastal Louisiana (CRMS 0224) in October of 2019. Each sample is identified by a unique identifier that corresponds to each site by depth increment combination. The pond age range associated with each site is provided. The depth increment associSimulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model. - Multimedia
- Publications
Filter Total Items: 23
Upscaling wetland methane emissions from the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model development, network assessment, and budget comparison
Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covAuthorsGavin McNicol, Etienne Fluet-Chouinard, Zutao Ouyang, Sarah Knox, Zhang Zhen, Tuula Aalto, Sheel Bansal, Kuang-Yu Chang, Min Chen, Kyle Delwiche, Sarah Feron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, William Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Yang, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur Desai, Eugenie Euskirchen, Jordan Goodrich, Timothy Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John King, Franziska Koebsch, Randall Kolka, Ken Krauss, Annalea Lohila, Ivan Mammarella, Mats Nilson, Asko Noormets, Walter Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva-Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. JacksonBoreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures
Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts in ToptA of field-grown trees will keep pace with the temperatures predicted for the 21st century under elevated atmospheric CO2 conAuthorsMirindi E. Dusenge, Jeffery M. Warren, Peter B. Reich, Eric Ward, Bridget K. Murphy, Artur Stefanski, Raimundo Bermudez, Marisol Cruz, David A. McLennan, Anthony W. King, Rebecca A. Montgomery, Paul J. Hanson, Danielle A. WayModeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands
Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4 and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought-induced saltwater intrusion on CH4 and N2O emissions remain unclear.AuthorsHongqing Wang, Zhaohua Dai, Ken Krauss, Carl C. Trettin, Gregory B. Noe, Andrew J. Burton, Eric WardMangroves provide blue carbon ecological value at a low freshwater cost
“Blue carbon” wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration (ET). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is as much as 2905 kL H2O ha−1 year−1 less than adjacent ecoregAuthorsKen Krauss, Catherine E. Lovelock, Luzhen Chen, Uta Berger, Marilyn C. Ball, Ruth Reef, Ronny Peters, Hannah Bowen, Alejandra G. Vovides, Eric Ward, Marie-Christin Wimmler, Joel A. Carr, Pete Bunting, Jamie A. DubersteinCausality guided machine learning model on wetland CH4 emissions across global wetlands
Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra)AuthorsKunxiaojia Yuan, Qing Zhu, Fa Li, William J. Riley, Margaret Torn, Housen Chu, Gavin McNicol, Mingshu Chen, Sara Knox, Kyle B. Delwiche, Huayi Wu, Dennis Baldocchi, Hongxu Ma, Ankur R. Desai, Jiquan Chen, Torsten Sachs, Masahito Ueyama, Oliver Sonnentag, Manuel Helbig, Eeva-Stiina Tuittila, Gerald Jurasinski, Franziska Koebsch, David I. Campbell, Hans Peter Schmid, Annalea Lohila, Mathias Goeckede, Mats B. Nilsson, Thomas Friborg, Joachim Jansen, Donatella Zona, Eugenie S. Euskirchen, Eric Ward, Gil Bohrer, Zhenong Jin, Licheng Liu, Hiroki Iwata, Jordan P. Goodrich, Robert B. JacksonA model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a Louisiana salt marsh in the Mississippi River Deltaic Plain
The potential for carbon sequestration in coastal wetlands is high due to protection of carbon (C) in flooded soils. However, excessive flooding can result in the conversion of the vegetated wetland to open water. This transition results in the loss of wetland habitat in addition to the potential loss of soil carbon. Thus, in areas experiencing rapid wetland submergence, such as the Mississippi RiAuthorsDonald R. Schoolmaster, Camille Stagg, Courtney Creamer, Claudia Laurenzano, Eric Ward, Mark Waldrop, Melissa M. Baustian, Tiong Aw, Sergio Merino, Rachel Katherine Villani, Laura ScottModeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we developed a procesAuthorsHongqing Wang, Zhaohua Dai, Carl C. Trettin, Ken Krauss, Gregory B. Noe, Andrew J. Burton, Camille Stagg, Eric WardWetlands under global change
Wetlands are among the ecosystem types most threatened by global change, including both climate change and other anthropogenic factors such as sea level rise, urban development, deforestation, agricultural land use, drainage, levees, tidal flow restrictions, pollution, eutrophication, and fires. Wetlands not only store disproportionate amounts of carbon compared to other terrestrial ecosystems, buAuthorsEric WardSummary of wetland carbon and environmental management: Path forward
Wetlands around the world are under pressure from both anthropogenic sources such as land-use change and accelerating climate change (Erwin, 2009; Moomaw et al., 2018). Storage of carbon resources is a key ecosystem service of wetlands and offer natural solutions to climate change mitigation; policies and management actions could determine the fate of these resources and their contributions to cliAuthorsZhiliang Zhu, Ken Krauss, Camille Stagg, Eric Ward, Victoria WoltzFLUXNET-CH4: A global, multi-ecosystem database and analysis of methane seasonality from freshwater wetlands
Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux meaAuthorsKyle B. Delwiche, Sarah Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Weinan Chen, Jiquan Chen, Housen Chu, Higo J Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie S. Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Joachim Jansen, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca B Marchesini, Giovanni Manca, Jaclyn H Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin RK Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina VR Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L Vourlitis, Eric Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. JacksonGap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictorsAuthorsJeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet-Chouinard, Zutao Ouyang, Sara Helen Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle B. Delwiche, Ankur R. Desai, Eugenie S. Euskirchen, Sarah Feron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram A.M. Kalhori, Andrew Kondrich, Derrick Y. F. Lai, Annalea Lohila, Avni Malholtra, Lutz Merbold, Bhaskar Mitra, Andrew Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, A. Camilo Rey-Sanchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina V. R. Schäfer, Oliver Sonnentag, Ellen Stuart-Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, George L. Vourlitis, Eric Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita R. Alberto, David P. Billesbach, Gerardo Celis, Han Dolman, Thomas Friborg, Kathrin Fuchs, Sebastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne J. Szutu, Eeva-Stiina Tuittila, Andrej Varlagin, Joseph G. Verfaillie, Christian Wille, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. JacksonRestoration of mangrove forest
Mangrove forests occur worldwide along tropical coasts in inundated soils where primary production and anaerobic conditions contribute to the building of soil organic matter (Also see Mangroves Hot-spot, Volume 2). Note that peat may accumulate in certain coastal mangrove (Middleton and McKee, 2001). The actual amount of soil organic matter stored in these wetlands depends on the balance between pAuthorsBeth Middleton, Eric Ward