Publications
The USGS fire science mission is to produce and deliver the best available scientific information, tools, and products to support land and emergency management by individuals and organizations at all levels. Below are USGS publications associated with our fire science portfolio.
Filter Total Items: 327
Negative impacts of summer heat on Sierra Nevada tree seedlings Negative impacts of summer heat on Sierra Nevada tree seedlings
Understanding the response of forests to climate change is important for predicting changes in biodiversity and ecosystem services, including carbon storage. Seedlings represent a key demographic stage in these responses, because seedling establishment is necessary for population persistence and spread, and because the conditions allowing seedlings to survive and grow are often more...
Authors
Emily V. Moran, Adrian J. Das, Jon Keeley, Nathan L. Stephenson
Hydroseeding tackifiers and dryland moss restoration potential Hydroseeding tackifiers and dryland moss restoration potential
Tackifiers are long‐chain carbon compounds used for soil stabilization and hydroseeding and could provide a vehicle for biological soil crust restoration. We examined the sensitivity of two dryland mosses, Bryum argenteum and Syntrichia ruralis, to three common tackifiers ‐ guar, psyllium, and polyacrylamide (PAM) ‐ at 0.5x, 1.0x, and 2.0x of recommended (x) concentrations for erosion...
Authors
W. Dillon Blankenship, Lea A. Condon, David A. Pyke
Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance
The apparent failure of ecosystems to recover from increasingly widespread disturbance is a global concern. Despite growing focus on factors inhibiting resilience and restoration, we still know very little about how demographic and population processes influence recovery. Using inverse and forward demographic modelling of 531 post‐fire sagebrush populations across the western US, we show...
Authors
Robert K. Shriver, Caitlin M. Andrews, Robert Arkle, David Barnard, Michael C. Duniway, Matthew J. Germino, David S. Pilliod, David A. Pyke, Justin L. Welty, John B. Bradford
A 4000-year history of debris flows in north-central Washington State, U.S.A.: Preliminary results from trenching and surficial geologic mapping at the Pope Creek fan A 4000-year history of debris flows in north-central Washington State, U.S.A.: Preliminary results from trenching and surficial geologic mapping at the Pope Creek fan
Long-term records of the magnitude and frequency of debris flows on fans are rare, but such records provide critical information needed for debris-flow hazard and risk assessments. This study explores the history of debris flows on a fan with seasonally inhabited cabins at Pope Creek along the Entiat River about 48 km upstream from the town of Entiat, Washington. Motivation for this...
Authors
Jeffrey A. Coe, Erin Bessette-Kirton, Stephen Slaughter, Francis K. Rengers, Trevor A. Contreras, Katherin A Michelson, Emily Taylor, Jason W. Kean, Kara Jacobacci, Molly A Hanson
Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs, Colorado, USA Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs, Colorado, USA
We present a series of debris-flow events and use combined sensor and video data to explore how sediment concentration and triggering rainfall intensity affect the velocity and discharge of debris-flow surges generated by surface-water runoff. We analyze an initial data set of 49 surges from four debris-flow events recorded by a monitoring system at Chalk Cliffs, Colorado and compare...
Authors
Joel B. Smith, Jason W. Kean, Jeffrey A. Coe
An evaluation of debris-flow runout model accuracy and complexity in Montecito, CA: Towards a framework for regional inundation-hazard forecasting An evaluation of debris-flow runout model accuracy and complexity in Montecito, CA: Towards a framework for regional inundation-hazard forecasting
Numerous debris-flow inundation models have been applied retroactively to noteworthy events around the world. While such studies can be useful in identifying controlling factors, calibrating model parameters, and assessing future hazards in specific study areas, model parameters tailored to individual events can be difficult to apply regionally. The advancement of debris-flow modeling...
Authors
Erin Bessette-Kirton, Jason W. Kean, Jeffrey A. Coe, Francis K. Rengers, Dennis M. Staley
Looking through the window of disturbance at post-wildfire debris-flow hazards Looking through the window of disturbance at post-wildfire debris-flow hazards
The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote increases in runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Over a period of several years, referred to as the window of disturbance...
Authors
Luke McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Hui Tang, Ann Youberg
Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin
Species that are primarily seral may form stable (self-sustaining) communities under certain disturbance regimes or environmental conditions, yet such populations may also be particularly vulnerable to ecological change. Aspen (Populus spp.) are generally considered seral throughout the northern hemisphere, including P. tremuloides, the most widely distributed tree species in North...
Authors
Douglas J. Shinneman, Susan McIlroy
Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance
Reestablishing shrub canopy cover after disturbance in semi-arid ecosystems, such as sagebrush steppe, is essential to provide wildlife habitat and restore ecosystem functioning. While several studies have explored the effects of landscape and climate factors on the success or failure of sagebrush seeding, the influence of soil properties on gradients of shrub canopy structure in...
Authors
David Barnard, Matthew J. Germino, Robert Arkle, John Bradford, Michael Duniway, David S. Pilliod, David Pyke, Robert Shriver, Justin L. Welty
Post-fire rockfall and debris-flow hazard zonation in the Eagle Creek Fire burn area, Columbia River Gorge, Oregon: a tool for emergency managers and first responders Post-fire rockfall and debris-flow hazard zonation in the Eagle Creek Fire burn area, Columbia River Gorge, Oregon: a tool for emergency managers and first responders
The Eagle Creek Fire engulfed 48,832 acres (196 km2) within the Columbia River Gorge, Oregon beginning September 2nd and was 100% contained by November 30th, 2017. The Columbia River Gorge area is steep and heavily forested characterized by cliffs and flanking talus slopes, receiving > 100 inches (> 254 cm) of precipitation annually. The Columbia River Gorge is a critical lifeline for...
Authors
Nancy C. Calhoun, William J. Burns, S.H. Hayduk, Dennis M. Staley, Jason W. Kean
Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado
The destructive nature of debris flows makes it difficult to quantify flow dynamics with direct instrumentation. For this reason, seismic sensors placed safely away from the flow path are often used to identify the timing and speed of debris flows. While seismic sensors have proven to be a valuable tool for event detection and early warning, their potential for identifying other aspects...
Authors
A. Michel, Jason W. Kean, Joel B. Smith, Kate E. Allstadt, Jeffrey A. Coe
Integrating anthropogenic factors into regional-scale species distribution models — A novel application in the imperiled sagebrush biome Integrating anthropogenic factors into regional-scale species distribution models — A novel application in the imperiled sagebrush biome
Species distribution models (SDM) that rely on regional-scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local-scale anthropogenic variables, including wildfire history, land-use change, invasive species, and ecological restoration practices can override regional-scale variables...
Authors
Juan M. Requena-Mullor, Kaitlin C. Maguire, Douglas J. Shinneman, T. Trevor Caughlin