Clint Muhlfeld, Ph.D.
Biography
Associate Research Professor
Flathead Lake Biological Station, University of Montana
Education
Ph.D. 2008. Fish and Wildlife Biology, Montana State University, Bozeman
M.S. 1999. Fishery Resources, University of Idaho, Moscow
B.S. 1994. Aquatic Biology, University of Montana, Missoula; University of Maine, Orono
Research interests
I am a Research Aquatic Ecologist for the USGS Northern Rocky Mountain Science Center stationed in Glacier National Park and Associate Research Professor at the University of Montana’s Flathead Lake Biological Station. My general research interests encompass the fields of aquatic ecology, fisheries biology, and conservation biology. My research goal is to understand how aquatic species interact with physical and biological templates over space and time to inform conservation and management. Specifically, my applied research focuses on assessing how human stressors – invasive species, habitat modification, and climate change – influence native salmonids and rare alpine macroinvertebrates in the Rocky Mountains of United States and Canada.
My research spans a range of scientific and conservation issues from examining evolutionary and ecological impacts of invasive species on native fishes, assessing life history and genetic diversity of native salmonids, assessing the status of threatened freshwater species, investigating the impacts of dams and barriers on aquatic species and ecosystems, developing quantitative models (e.g., stream temperature, instream flow/habitat, bioenergetics, riverscape connectivity, population viability) to predict species’ responses to environmental change, to understanding and predicting the impacts of climate change on freshwater species and ecosystems.
I particularly enjoy collaboration and multidisciplinary research, and advising and educating graduate students working on freshwater ecology and conservation biology projects. Currently, I actively participate on several regional, national, and international science teams that address natural resource issues facing aquatic ecosystems. My hope is that the ecological integrity of aquatic ecosystems will be conserved for future generations through research-informed management and education.
Science and Products
Predicting climate change effects on aquatic ecosystems in the Crown of the Continent
Climate change poses a serious threat to natural resources, biodiversity, and ecosystem services in the United States, especially in the Rocky Mountain Ecoregion. The Crown of the Continent Ecosystem (CCE) is considered one of the largest, most pristine, and biodiverse ecosystems in North America, spanning the northern Rocky Mountains of the United States and Canada. In the heart of the CCE is...
Assessing the impacts of mining in the Transboundary Flathead and Kootenai River systems
The Transboundary Flathead and Kootenai Basins in Montana and British Columbia host some of the most diverse and unique native aquatic ecosystems throughout North America. Headwaters of these basin feed into Waterton-Glacier International Peace Park (U.S. and Canada) and Flathead Lake, and Lake Koocanusa and the Kootenai River in the U.S. Despite the tremendous historical and ecological...
Climate change links fate of glaciers and rare alpine stream invertebrates in Glacier National Park
The extensive loss of glaciers in Glacier National Park (GNP) is iconic of the global impacts of climate warming in mountain ecosystems. However, little is known about how climate change may threaten alpine stream species, especially invertebrates, persisting below disappearing snow and ice masses in GNP. Two alpine stream invertebrates – the meltwater stonefly and the glacier stonefly – have...
Integrated bioassessment of imperiled alpine aquatic ecosystems using NPS vital signs and USGS research data: Implications for conservation under a warming climate
Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. The loss of glaciers in Glacier National Park (GNP) is iconic of the combined impacts of global warming and reduced snowpack−all remaining 25 glaciers are predicted to disappear by 2030. These changes will...
Evaluation of alternative dam operations on the movement and habitat use of bull trout and westslope cutthroat trout
The goal of this project is to quantify the operational impacts of Hungry Horse Dam on native bull trout and westslope cutthroat trout in the upper Flathead River system, Montana.
Webinar: Predicting Climate Change Impacts on Aquatic Ecosystems across the Pacific Northwest
View this webinar to learn more about the impacts of climate change on Northwest fishes.
Predicting Climate Change Impacts on River Ecosystems and Salmonids across the Pacific Northwest
Salmonids, a group of coldwater adapted fishes of enormous ecological and socio-economic value, historically inhabited a variety of freshwater habitats throughout the Pacific Northwest (PNW). Over the past century, however, populations have dramatically declined due to habitat loss, overharvest, and invasive species. Consequently, many populations are listed as threatened or endangered under...
Long-term population dynamics and conservation risk of migratory bull trout in the upper Columbia River basin
We used redd count data from 88 bull trout (Salvelinus confluentus) populations in the upper Columbia River basin to quantify local and regional patterns in population dynamics, including adult abundance, long-term trend, and population synchrony. We further used this information to assess conservation risk of metapopulations using eight...
Kovach, Ryan; Jonathan Armstrong; David Schmetterling; Al-Chokhachy, Robert; Muhlfeld, Clint C.Demographic modelling reveals a history of divergence with gene flow for a glacially tied stonefly in a changing post-Pleistocene landscape
AimClimate warming is causing extensive loss of glaciers in mountainous regions, yet our understanding of how glacial recession influences evolutionary processes and genetic diversity is limited. Linking genetic structure with the influences shaping it can improve understanding of how species respond to environmental change. Here, we used genome-...
Hotaling, Scott; Muhlfeld, Clint C.; Giersch, J. Joseph; Ali, Omar; Jordan, Steve; Miller, Michael R.; Luikart, Gordon; Weisrock, David W.A social–ecological perspective for riverscape management in the Columbia River Basin
Riverscapes are complex, landscape-scale mosaics of connected river and stream habitats embedded in diverse ecological and socioeconomic settings. Social–ecological interactions among stakeholders often complicate natural-resource conservation and management of riverscapes. The management challenges posed by the conservation and restoration of...
Hand, Brian K.; Flint, Courtney G.; Frissell, Chris A.; Muhlfeld, Clint C.; Devlin, Shawn P.; Kennedy, Brian P.; Crabtree, Robert L.; McKee, W. Arthur; Luikart, Gordon; Stanford, Jack A.Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada
Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (...
Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.No evidence for ecological segregation protecting native trout from invasive hybridization
We appreciate the comments of Young et al. (2017) on our recent paper (Muhlfeld et al., 2017) concerning spatiotemporal dynamics of hybridization between native westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT) and introduced coastal rainbow trout (Oncorhynchus mykiss irideus; RBT). Nevertheless, we believe there is no evidence for “...
Kovach, Ryan; Muhlfeld, Clint C.; Al-Chokhachy, Robert K.; Amish, Stephen J.; Kershner, Jeffrey L.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Matson, Phil; Schmetterling, David; Shepard, Bradley; Westley, Peter A. H.; Whited, Diane; Whiteley, Andrew R.; Allendorf, Fred W.USGS integrated drought science
Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme...
Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.Temperature
Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to...
F. Richard Hauer; Lamberti, G. A.; Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. RichardLegacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout
Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large,...
Muhlfeld, Clint C.; Kovach, Ryan P.; Al-Chokhachy, Robert K.; Amish, Stephen J.; Kershner, Jeffrey L.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Matson, Phil; Schmetterling, David A.; Shepard, Bradley B.; Westley, Peter A. H.; Whited, Diane; Whiteley, Andrew R.; Allendorf, Fred W.Suppression of invasive lake trout in an isolated backcountry lake in Glacier National Park
Fisheries managers have implemented suppression programmes to control non-native lake trout, Salvelinus namaycush (Walbaum), in several lakes throughout the western United States. This study determined the feasibility of experimentally suppressing lake trout using gillnets in an isolated backcountry lake in Glacier National Park, Montana, USA, for...
Fredenberg, C. R.; Muhlfeld, Clint C.; Guy, Christopher S.; D'Angelo, Vincent S.; Downs, Christopher C.; Syslo, John M.Climate-induced glacier and snow loss imperils alpine stream insects
Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine...
Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.Assessments of species' vulnerability to climate change: From pseudo to science
Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of...
Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, GordonClimate, invasive species and land use drive population dynamics of a cold-water specialist
Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences...
Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M.; Muhlfeld, Clint C.