James's research broadly focuses on surface water-quality studies designed to understand how in-stream conditions are changing over time and the drivers of such changes. Current projects are focused on assessing the effects of watershed management in urban and agricultural settings.
Professional Experience
2012 – Present Hydrologist, USGS Virginia and West Virginia Water Science Center, Richmond, VA
Education and Certifications
M.S., Forest Resources, 2012, The Pennsylvania State University
B.S., Environmental Resource Management, 2010, The Pennsylvania State University
Science and Products
Summarizing Scientific Findings for Common Stakeholder Questions to Inform Nutrient and Sediment Management Activities in the Chesapeake Bay Watershed
Issue: The Chesapeake Bay Program (CBP) partnership is striving to improve water-quality conditions in the Bay by using a variety of management strategies to reduce nutrient and sediment loads. The partnership uses monitoring results and modeling tools to implement management strategies, relying on the scientific community to synthesize existing information and direct new research to address...
Hydrologic Monitoring and Analysis to Support Water Resource Management in the City of Roanoke
The U.S. Geological Survey, partnering with the City of Roanoke and Virginia Tech, are working to monitor the water volume and quality in streams throughout the City of Roanoke. There are currently six monitoring stations within the city. Water-quality data are collected at five stations through real-time monitors and manual sampling to support the estimation of suspended sediment loads. The...
Chesapeake Bay Nontidal Network 1985 - 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regres
Inputs and Selected Outputs Used to Assess Spatial and Temporal Patterns in Streamflow, Water-Chemistry, and Aquatic Macroinvertebrates of Selected Streams in Fairfax County, Virginia, 2007-2018
Nitrogen (N), phosphorus (P), and suspended-sediment (SS) loads, in Fairfax County, Virginia streams have been calculated using monitoring data from five intensively monitored watersheds for the period from water year (October - September) 2008-2017. Nutrient and suspended-sediment loads were computed using a surrogate (multiple-linear regression) approach with lab analyzed N, P, and SS samples as
Nitrogen in the Chesapeake Bay watershed—A century of change, 1950–2050
ForewordSustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term e
Nutrient trends and drivers in the Chesapeake Bay Watershed
The Chesapeake Bay Program maintains an extensive nontidal monitoring network, measuring nitrogen and phosphorus (nutrients) at more than 100 locations on rivers and streams in the watershed. Data from these locations are used by United States Geological Survey to assess the ecosystem’s response to nutrient-reduction efforts. This fact sheet summarizes recent trends in nitrogen and phosphorus in n
Potomac tributary report: A summary of trends in tidal water quality and associated factors
The Potomac Tributary Report summarizes change over time in a suite of monitored tidal water quality parameters and associated potential drivers of those trends for the time period 1985 – 2018, and provides a brief description of the current state of knowledge explaining these observed changes. Water quality parameters described include surface total nitrogen (TN), surface total phosphorus (TP), s
An approach for decomposing river water-quality trends into different flow classes
A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN2Q, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method.
Spatial and temporal patterns in streamflow, water chemistry, and aquatic macroinvertebrates of selected streams in Fairfax County, Virginia, 2007–18
Urbanization substantially alters the landscape in ways that can impact stream hydrology, water chemistry, and the health of aquatic communities. Stormwater best management practices (BMPs) are the primary tools used to mitigate the effects of urban stressors such as increased runoff, decreased baseflow, and increased nutrient and sediment transport. To date, Fairfax County Virginia’s stormwater m
Science to support water-resource management in the upper Roanoke River watershed
Flooding, excessive sedimentation, and high bacteria counts are among the most challenging water resource issues affecting the Upper Roanoke River watershed. These issues threaten public safety, impair the watershed’s living resources, and threaten drinking water supplies, though mitigation is costly and difficult to manage.Urban development, land disturbance, and changing climatic patterns contin
Sediment dynamics and implications for management: State of the science from long‐term research in the Chesapeake Bay watershed, USA
This review aims to synthesize the current knowledge of sediment dynamics using insights from long‐term research conducted in the watershed draining to the Chesapeake Bay, the largest estuary in the U.S., to inform management actions to restore the estuary and its watershed. The sediment dynamics of the Chesapeake are typical of many impaired watersheds and estuaries around the world, and this syn
Factors driving nutrient trends in streams of the Chesapeake Bay watershed
Despite decades of effort toward reducing nitrogen and phosphorus flux to Chesapeake Bay, water-quality and ecological responses in surface waters have been mixed. Recent research, however, provides useful insight into multiple factors complicating the understanding of nutrient trends in bay tributaries, which we review in this paper, as we approach a 2025 total maximum daily load (TMDL) managemen
Science and Products
- Science
Summarizing Scientific Findings for Common Stakeholder Questions to Inform Nutrient and Sediment Management Activities in the Chesapeake Bay Watershed
Issue: The Chesapeake Bay Program (CBP) partnership is striving to improve water-quality conditions in the Bay by using a variety of management strategies to reduce nutrient and sediment loads. The partnership uses monitoring results and modeling tools to implement management strategies, relying on the scientific community to synthesize existing information and direct new research to address...Hydrologic Monitoring and Analysis to Support Water Resource Management in the City of Roanoke
The U.S. Geological Survey, partnering with the City of Roanoke and Virginia Tech, are working to monitor the water volume and quality in streams throughout the City of Roanoke. There are currently six monitoring stations within the city. Water-quality data are collected at five stations through real-time monitors and manual sampling to support the estimation of suspended sediment loads. The... - Data
Chesapeake Bay Nontidal Network 1985 - 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted RegresInputs and Selected Outputs Used to Assess Spatial and Temporal Patterns in Streamflow, Water-Chemistry, and Aquatic Macroinvertebrates of Selected Streams in Fairfax County, Virginia, 2007-2018
Nitrogen (N), phosphorus (P), and suspended-sediment (SS) loads, in Fairfax County, Virginia streams have been calculated using monitoring data from five intensively monitored watersheds for the period from water year (October - September) 2008-2017. Nutrient and suspended-sediment loads were computed using a surrogate (multiple-linear regression) approach with lab analyzed N, P, and SS samples as - Publications
Nitrogen in the Chesapeake Bay watershed—A century of change, 1950–2050
ForewordSustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term eNutrient trends and drivers in the Chesapeake Bay Watershed
The Chesapeake Bay Program maintains an extensive nontidal monitoring network, measuring nitrogen and phosphorus (nutrients) at more than 100 locations on rivers and streams in the watershed. Data from these locations are used by United States Geological Survey to assess the ecosystem’s response to nutrient-reduction efforts. This fact sheet summarizes recent trends in nitrogen and phosphorus in nPotomac tributary report: A summary of trends in tidal water quality and associated factors
The Potomac Tributary Report summarizes change over time in a suite of monitored tidal water quality parameters and associated potential drivers of those trends for the time period 1985 – 2018, and provides a brief description of the current state of knowledge explaining these observed changes. Water quality parameters described include surface total nitrogen (TN), surface total phosphorus (TP), sAn approach for decomposing river water-quality trends into different flow classes
A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN2Q, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method.Spatial and temporal patterns in streamflow, water chemistry, and aquatic macroinvertebrates of selected streams in Fairfax County, Virginia, 2007–18
Urbanization substantially alters the landscape in ways that can impact stream hydrology, water chemistry, and the health of aquatic communities. Stormwater best management practices (BMPs) are the primary tools used to mitigate the effects of urban stressors such as increased runoff, decreased baseflow, and increased nutrient and sediment transport. To date, Fairfax County Virginia’s stormwater mScience to support water-resource management in the upper Roanoke River watershed
Flooding, excessive sedimentation, and high bacteria counts are among the most challenging water resource issues affecting the Upper Roanoke River watershed. These issues threaten public safety, impair the watershed’s living resources, and threaten drinking water supplies, though mitigation is costly and difficult to manage.Urban development, land disturbance, and changing climatic patterns continSediment dynamics and implications for management: State of the science from long‐term research in the Chesapeake Bay watershed, USA
This review aims to synthesize the current knowledge of sediment dynamics using insights from long‐term research conducted in the watershed draining to the Chesapeake Bay, the largest estuary in the U.S., to inform management actions to restore the estuary and its watershed. The sediment dynamics of the Chesapeake are typical of many impaired watersheds and estuaries around the world, and this synFactors driving nutrient trends in streams of the Chesapeake Bay watershed
Despite decades of effort toward reducing nitrogen and phosphorus flux to Chesapeake Bay, water-quality and ecological responses in surface waters have been mixed. Recent research, however, provides useful insight into multiple factors complicating the understanding of nutrient trends in bay tributaries, which we review in this paper, as we approach a 2025 total maximum daily load (TMDL) managemen